Trong không gian với hệ trục \[Oxyz\], cho tam giác \(ABC\) với \[A\left( {8;9;2} \right)\], \[B\left( {3;5;1} \right),\]\[C\left( {11;10;4} \right).\] Số đo góc \(\widehat {BAC}\) của tam giác \(ABC\) đó là:
Trong không gian với hệ trục \[Oxyz\], cho tam giác \(ABC\) với \[A\left( {8;9;2} \right)\], \[B\left( {3;5;1} \right),\]\[C\left( {11;10;4} \right).\] Số đo góc \(\widehat {BAC}\) của tam giác \(ABC\) đó là:
D. \(30^\circ \).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \(\overrightarrow {AB} = \left( { - 5; - 4; - 1} \right)\) \( \Rightarrow AB = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {42} .\)
\(\overrightarrow {AC} = \left( {3;1;2} \right)\) \( \Rightarrow AC = \sqrt {{3^2} + {1^2} + {2^2}} = \sqrt {14} \).
Ta có: \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - 5.3 + \left( { - 4} \right).1 + \left( { - 1} \right).2}}{{\sqrt {42} .\sqrt {14} }} = - \frac{{\sqrt 3 }}{2}\).
Suy ra \(\widehat {BAC} = 150^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét: \(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)
Ta có: \(h'(t) = - {t^2} + 10t + 24\)
\(h'(t) = 0 \Leftrightarrow - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t = - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)
Bảng biến thiên:
Để mực nước lên cao nhất thì phải mất 12 giờ.
Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.
Câu 2
D. \(m = - 2\).
Lời giải
Đáp án đúng là: B
Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).
Vì \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).
Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).
Câu 3
A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) với \(O\) là điểm bất kì.
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).
D. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(y = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(72N\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và giá trị lớn nhất bằng \(1\).
C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
D. Hàm số đạt giá trị lớn nhất tại điểm có hoành độ \(x = 1\) và giá trị lớn nhất bằng \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.