Câu hỏi:

04/10/2024 162 Lưu

Trong không gian với hệ trục \[Oxyz\], cho tam giác \(ABC\) với \[A\left( {8;9;2} \right)\], \[B\left( {3;5;1} \right),\]\[C\left( {11;10;4} \right).\] Số đo góc \(\widehat {BAC}\) của tam giác \(ABC\) đó là:

A. \(150^\circ \).     
B. \(60^\circ \).
C. \(120^\circ \).

D. \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(\overrightarrow {AB} = \left( { - 5; - 4; - 1} \right)\) \( \Rightarrow AB = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {42} .\)

            \(\overrightarrow {AC} = \left( {3;1;2} \right)\) \( \Rightarrow AC = \sqrt {{3^2} + {1^2} + {2^2}} = \sqrt {14} \).

Ta có: \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - 5.3 + \left( { - 4} \right).1 + \left( { - 1} \right).2}}{{\sqrt {42} .\sqrt {14} }} = - \frac{{\sqrt 3 }}{2}\).

Suy ra \(\widehat {BAC} = 150^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét: \(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)

Ta có: \(h'(t) = - {t^2} + 10t + 24\)

\(h'(t) = 0 \Leftrightarrow - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t = - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Hằng ngày mực nước của hồ thủy điện ở (ảnh 1)

Để mực nước lên cao nhất thì phải mất 12 giờ.

Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.

Lời giải

Đáp án đúng là: B

Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).

Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).

Câu 3

A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) với \(O\) là điểm bất kì.

B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

D. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\(\left( {3;\frac{8}{3}; - \frac{8}{3}} \right)\).
B.\(\left( {\frac{8}{3};3; - \frac{8}{3}} \right)\).
C.\(\left( {3;3; - \frac{8}{3}} \right)\).
D.\(\left( {1;2;\frac{1}{3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và không có giá trị lớn nhất.

B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và giá trị lớn nhất bằng \(1\).

C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.    

D. Hàm số đạt giá trị lớn nhất tại điểm có hoành độ \(x = 1\) và giá trị lớn nhất bằng \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP