Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Tập xác định của hàm số là . Do đó, hàm số
liên tục và xác định trên đoạn
.
Ta có: ;
.
Từ đó suy ra .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) Đ, d) S.
Xét hàm số .
– Tập xác định của hàm số là .
– Ta có ;
với mọi
.
– Hàm số đã cho đồng biến trên từng khoảng và
. Do đó, ý a) sai.
– Hàm số đã cho không có cực trị. Do đó, ý b) đúng.
– Tiệm cận:
+) . Do đó, tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng
.
+) . Do đó, tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng
.
Vậy ý c) đúng.
– Gọi là hoành độ tiếp điểm của tiếp tuyến của
thỏa mãn yêu cầu bài toán. Khi đó, hệ số góc của tiếp tuyến này là
.
Vì tiếp tuyến song song với đường thẳng có hệ số góc là
nên
, suy ra
hoặc
.
Vì đường thẳng và
có hai giao điểm nên
không phải là tiếp tuyến của đồ thị hàm số.
Vậy tổng hoành độ của hai tiếp điểm là , đây không phải là một số chính phương. Do đó, ý d) sai.
Lời giải
Đáp án đúng là: A
Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm và
, chính là đường thẳng
.
Do đó, đường thẳng là tiệm cận xiên của đồ thị hàm số đã cho.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.