Câu hỏi:

09/10/2024 666

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{ax + 1}}{{bx + c}}\) (\(a,\,b,\,c\) là các tham số) có bảng biến thiên như sau:  

a) Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số đã cho có \(2\) điểm cực trị.

c) Trên khoảng \(\left( {2; + \infty } \right)\), giá trị lớn nhất của hàm số đã cho bằng \(1\).

d) Giá trị của biểu thức \(a + b + c\) bằng \(0\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ.

Hướng dẫn giải

Quan sát bảng biến thiên, ta thấy:

– Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\). Vậy ý a) đúng.

– Hàm số đã cho không có cực trị. Vậy ý b) sai. 

 Trên khoảng \(\left( {2; + \infty } \right)\), ta có \(1 > y\), tuy nhiên không tồn tại giá trị của \(x\) để \(y = 1\) nên hàm số đã cho không có giá trị lớn nhất trên khoảng này. Do đó, ý c) sai.

– Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường thẳng \(y = 1\) nên ta có hệ sau: \(\left\{ \begin{array}{l} - \frac{c}{b} = 2\\\frac{a}{b} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c =  - 2b\\a = b\end{array} \right.\).

Khi đó, \(a + b + c = b + b + \left( { - 2b} \right) = 0\).

Vậy ý d) đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\sqrt 2 \). Góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {A'C'} \) bằng:

Xem đáp án » 09/10/2024 5,140

Câu 2:

Hai con tàu \[A\]\(B\) đang ở cùng một vĩ tuyến và cách nhau 5 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \[A\] chạy về hướng Nam với vận tốc 6 hải lí/giờ, còn tàu \[B\] chạy về vị trí hiện tại của tàu \[A\] với vận tốc 7 hải lí/giờ (tham khảo hình vẽ). Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 09/10/2024 3,050

Câu 3:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\) là đường thẳng:

Xem đáp án » 09/10/2024 2,946

Câu 4:

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 1\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(A = 2a + b\) là bao nhiêu?

Xem đáp án » 09/10/2024 1,656

Câu 5:

Cho hình hộp \(ABCD.A'B'C'D'\). Vectơ \(\overrightarrow v  = \overrightarrow {B'A'}  + \overrightarrow {B'C'}  + \overrightarrow {B'B} \) bằng vectơ nào dưới đây?

Xem đáp án » 09/10/2024 1,372

Câu 6:

Một chất điểm ở v trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.

Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 09/10/2024 1,099

Câu 7:

Một chất điểm chuyển động theo phương trình \(s = f\left( t \right) = 0,5\cos \left( {2\pi t} \right)\), trong đó \(s\) tính bằng mét, \(t\) tính bằng giây. Gia tốc lớn nhất của chất điểm bằng bao nhiêu mét trên giây (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 09/10/2024 1,008