Câu hỏi:

09/10/2024 241

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; - 2; - 4} \right)\)\(B\left( {2;0;5} \right)\).

a) \(\overrightarrow {OA}  = 3\overrightarrow i  - 2\overrightarrow j  - 4\overrightarrow k \).

b) Tọa độ của vectơ \(\overrightarrow {AB} \)\(\left( {1; - 2; - 9} \right)\).

c) Điểm \(B\) nằm trong mặt phẳng \(\left( {Oxz} \right)\).

d) Cho vectơ \(\overrightarrow u  = \left( {1;3; - 7} \right)\), khi đó điểm \(C\) thỏa mãn \(\overrightarrow {AC}  = \overrightarrow u \) có tọa độ là \(\left( {4;1; - 11} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ.

Hướng dẫn giải

– Ta có \(\overrightarrow {OA}  = \left( {3; - 2; - 4} \right)\). Suy ra \(\overrightarrow {OA}  = 3\overrightarrow i  + \left( { - 2} \right)\overrightarrow j  + \left( { - 4} \right)\overrightarrow k  = 3\overrightarrow i  - 2\overrightarrow j  - 4\overrightarrow k \).

Do đó, ý a) đúng.

– Ta có: \(\overrightarrow {AB}  = \left( {2 - 3;0 - \left( { - 2} \right);5 - \left( { - 4} \right)} \right) = \left( { - 1;2;9} \right)\). Do đó, ý b) sai.

– Điểm \(B\left( {2;0;5} \right)\) có hoành độ \(x = 2 \ne 0\), tung độ \(y = 0\) và cao độ \(z = 5 \ne 0\) nên điểm \(B\) nằm trong mặt phẳng \(\left( {Oxz} \right)\). Do đó, ý c) đúng.

– Gọi tọa độ điểm \(C\)\(\left( {{x_C};{y_C};{z_C}} \right)\), ta có \(\overrightarrow {AC}  = \left( {{x_C} - 3;{y_C} + 2;{z_C} + 4} \right)\).

Khi đó, \(\overrightarrow {AC}  = \overrightarrow u \)\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} - 3 = 1\\{y_C} + 2 = 3\\{z_C} + 4 =  - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 4\\{y_C} = 1\\{z_C} =  - 11\end{array} \right.\). Vậy \(C\left( {4;1; - 11} \right)\).

Do đó, ý d) đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {A'C'}  = \overrightarrow {AC} \), suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB'} ,\,\overrightarrow {AC} } \right) = \widehat {B'AC}\).

Lại có \(AC = AB' = CB' = a\sqrt 2  \cdot \sqrt 2  = 2a\) nên tam giác \(ACB'\) là tam giác đều, suy ra \(\widehat {B'AC} = 60^\circ \).

Vậy \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = 60^\circ \).

Câu 2

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\) là đường thẳng:

Lời giải

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}} = x - 1 + \frac{4}{{2x + 1}}\).

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{4}{{2x + 1}} = 0\); \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{4}{{2x + 1}} = 0\).

Vậy đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình hộp \(ABCD.A'B'C'D'\). Vectơ \(\overrightarrow v  = \overrightarrow {B'A'}  + \overrightarrow {B'C'}  + \overrightarrow {B'B} \) bằng vectơ nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay