Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:
\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)
trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:
\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)
trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 12 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right) = 0,75{x^2} - 0,025{x^3}\), \(\left( {x > 0} \right)\).
\(G'\left( x \right) = 1,5x - 0,075{x^2}\)
\(G'\left( x \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 20\end{array} \right.\).
Ta có bảng biến thiên như sau:

Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng \(\left( {0;20} \right)\) thì huyết áp bệnh nhân tăng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) \Rightarrow {\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}\left( {{{\overrightarrow {AC} }^2} + 2\overrightarrow {AC} .\overrightarrow {BD} + {{\overrightarrow {BD} }^2}} \right)\)
\( = \frac{1}{4}\left( {2{a^2} + 2\overrightarrow {AC} .\overrightarrow {BD} } \right).\)
Mà: \(\overrightarrow {AC} .\overrightarrow {BD} = \overrightarrow {AC} .\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = \overrightarrow {AC} .\overrightarrow {AD} - \overrightarrow {AC} .\overrightarrow {AB} \)
\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos 60^\circ - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos 60^\circ = 0.\)
Suy ra \({\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}.2{a^2} = \frac{{{a^2}}}{2}\)\( \Rightarrow \left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 2 }}{2}.\)
Ta có: \(\overrightarrow {AC} .\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} .\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} + \overrightarrow {AC} .\overrightarrow {BD} } \right) = \frac{{{a^2}}}{2}.\)
Khi đó, \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {MN} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {MN} } \right|}} = \frac{{\frac{{{a^2}}}{2}}}{{a.\frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\sqrt 2 }}{2}.\)
Câu 2
Lời giải
Đáp án đúng là: B
Ta có: \(f'\left( x \right) = 2\left( {{x^2} - 2} \right){e^{2x}} + 2x{e^{2x}} = 2\left( {{x^2} + x - 2} \right){e^{2x}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ { - 1;2} \right]\\x = - 2 \notin \left[ { - 1;2} \right]\end{array} \right.\)
Và \(f\left( { - 1} \right) = - {e^{ - 2}};f\left( 2 \right) = 2{e^4};f\left( 1 \right) = - {e^2}.\)
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left( {{x^2} - 2} \right){e^{2x}}\) trên đoạn \(\left[ { - 1;2} \right]\) bằng \( - {e^2}\) tại \(x = 1.\)
Câu 3
.
.
.
.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




