Câu hỏi:
09/10/2024 109Hàm số \(y = f(x)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ dưới đây.
Tìm giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;2} \right]\).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Nhìn vào đồ thị ta thấy:
\(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 1\) khi \(x = - 1\) hoặc \(x = 2.\)
\(m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 5\) khi \(x = - 2\) hoặc \(x = 1.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 2}}{{x + 1}} = - \infty \) và \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 2}}{{x + 1}} = + \infty \) nên đường thẳng \(x = - 1\)là tiệm cận đứng của đồ thị hàm số.
Lời giải
Ta có: \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) \Rightarrow {\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}\left( {{{\overrightarrow {AC} }^2} + 2\overrightarrow {AC} .\overrightarrow {BD} + {{\overrightarrow {BD} }^2}} \right)\)
\( = \frac{1}{4}\left( {2{a^2} + 2\overrightarrow {AC} .\overrightarrow {BD} } \right).\)
Mà: \(\overrightarrow {AC} .\overrightarrow {BD} = \overrightarrow {AC} .\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = \overrightarrow {AC} .\overrightarrow {AD} - \overrightarrow {AC} .\overrightarrow {AB} \)
\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos 60^\circ - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos 60^\circ = 0.\)
Suy ra \({\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}.2{a^2} = \frac{{{a^2}}}{2}\)\( \Rightarrow \left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 2 }}{2}.\)
Ta có: \(\overrightarrow {AC} .\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} .\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} + \overrightarrow {AC} .\overrightarrow {BD} } \right) = \frac{{{a^2}}}{2}.\)
Khi đó, \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {MN} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {MN} } \right|}} = \frac{{\frac{{{a^2}}}{2}}}{{a.\frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\sqrt 2 }}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận