Câu hỏi:
09/10/2024 1,515
Cho hình lập phương \(ABCD.A'B'C'D'\). Có bao nhiêu vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương bằng vectơ \(\overrightarrow {BC} \)?
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Có 3 vectơ bằng vectơ \(\overrightarrow {BC} \), đó là: \(\overrightarrow {AD} ,\overrightarrow {A'D'} ,\overrightarrow {B'C'} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \(f'\left( x \right) = 2\left( {{x^2} - 2} \right){e^{2x}} + 2x{e^{2x}} = 2\left( {{x^2} + x - 2} \right){e^{2x}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ { - 1;2} \right]\\x = - 2 \notin \left[ { - 1;2} \right]\end{array} \right.\)
Và \(f\left( { - 1} \right) = - {e^{ - 2}};f\left( 2 \right) = 2{e^4};f\left( 1 \right) = - {e^2}.\)
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left( {{x^2} - 2} \right){e^{2x}}\) trên đoạn \(\left[ { - 1;2} \right]\) bằng \( - {e^2}\) tại \(x = 1.\)
Lời giải
Ta có: \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) \Rightarrow {\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}\left( {{{\overrightarrow {AC} }^2} + 2\overrightarrow {AC} .\overrightarrow {BD} + {{\overrightarrow {BD} }^2}} \right)\)
\( = \frac{1}{4}\left( {2{a^2} + 2\overrightarrow {AC} .\overrightarrow {BD} } \right).\)
Mà: \(\overrightarrow {AC} .\overrightarrow {BD} = \overrightarrow {AC} .\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = \overrightarrow {AC} .\overrightarrow {AD} - \overrightarrow {AC} .\overrightarrow {AB} \)
\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos 60^\circ - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos 60^\circ = 0.\)
Suy ra \({\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}.2{a^2} = \frac{{{a^2}}}{2}\)\( \Rightarrow \left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 2 }}{2}.\)
Ta có: \(\overrightarrow {AC} .\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} .\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} + \overrightarrow {AC} .\overrightarrow {BD} } \right) = \frac{{{a^2}}}{2}.\)
Khi đó, \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {MN} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {MN} } \right|}} = \frac{{\frac{{{a^2}}}{2}}}{{a.\frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\sqrt 2 }}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.