Câu hỏi:
10/10/2024 3,705
Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Giá trị cực đại của hàm số đã cho là \( - 1\).
c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).
d) Đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Giá trị cực đại của hàm số đã cho là \( - 1\).
c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).
d) Đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S.
Hướng dẫn giải
Xét hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
– Tập xác định của hàm số là \(\mathbb{R}\).
– Ta có \(y' = 3{x^2} - 6x - 9\); \(y' = 0\) khi \(x = - 1\) hoặc \(x = 3\).
Bảng biến thiên của hàm số như sau:
– Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - 1;3} \right)\). Do đó, ý a) đúng.
– Hàm số đã cho đạt cực tiểu tại \(x = 3\), \({y_{CT}} = - 22\); đạt cực đại tại . Do đó, ý b) sai.
– Với \(x = 0\) thì \(y = 5\); với \(x = 1\) thì \(y = - 6\); với \(x = - 1\) thì \(y = 10\).
Do đó, đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\,10} \right)\).
Do đó, ý c) sai.
– Từ bảng biến thiên ta suy ra đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 2 điểm phân biệt. Do đó, ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].
Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
Lời giải
Đáp án đúng là: D
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Giao điểm này có tọa độ là \(\left( { - 1;\,0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.