Câu hỏi:

10/10/2024 4,070

Cho \(a \ne 0,\,{b^2} - 3ac > 0\). Hàm số \(y = a{x^3} + b{x^2} + cx + d\) có tất cả bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(y' = 3a{x^2} + 2bx + c\); \(y' = 0 \Leftrightarrow 3a{x^2} + 2bx + c = 0\).

\({\Delta '_y} = {b^2} - 3ac > 0\) nên phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) (giả sử \({x_1} < {x_2}\)). Khi đó, với cả hai trường hợp \(a > 0\)\(a < 0\)  hàm số đã cho đều có 2 điểm cực trị.

Đáp số: \(2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Ta có \[\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].

Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Câu 2

Lời giải

Đáp án đúng là: D

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Giao điểm này có tọa độ là \(\left( { - 1;\,0} \right)\).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP