Câu hỏi:

10/10/2024 1,645 Lưu

Cho hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\).

a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\).

b) Hàm số đã cho không có cực trị.

c) \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận ngang là đường thẳng \(y = 2\).

d) Biết rằng trên \(\left( C \right)\) có 2 điểm phân biệt mà các tiếp tuyến của \(\left( C \right)\) tại các điểm đó song song với đường thẳng \(y = x\). Gọi \(k\) là tổng hoành độ của hai điểm đó, khi đó \(k\) là một số chính phương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S.

Hướng dẫn giải

Xét hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne  - 1\).

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho không có cực trị. Do đó, ý b) đúng.

– Tiệm cận:

+) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x - 1}}{{x + 1}} = 2;\,\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{x + 1}} = 2\). Do đó, tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng \(y = 2\).

+) \(\mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{2x - 1}}{{x + 1}} =  - \infty ;\,\mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{2x - 1}}{{x + 1}} =  + \infty \). Do đó, tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 1\).

Vậy ý c) đúng.

– Gọi \({x_0}\) là hoành độ tiếp điểm của tiếp tuyến của \(\left( C \right)\) thỏa mãn yêu cầu bài toán. Khi đó, hệ số góc của tiếp tuyến này là \(f'\left( {{x_0}} \right) = \frac{3}{{{{\left( {{x_0} + 1} \right)}^2}}}\).

Vì tiếp tuyến song song với đường thẳng \(y = x\) có hệ số góc là \(k = 1\) nên

\(f'\left( {{x_0}} \right) = \frac{3}{{{{\left( {{x_0} + 1} \right)}^2}}} = 1\), suy ra \({x_0} =  - 1 + \sqrt 3 \) hoặc \({x_0} =  - 1 - \sqrt 3 \).

Vì đường thẳng \(y = x\)\(\left( C \right)\) có hai giao điểm nên \(y = x\) không phải là tiếp tuyến của đồ thị hàm số.

Vậy tổng hoành độ của hai tiếp điểm là \(k =  - 1 + \sqrt 3  + \left( { - 1} \right) - \sqrt 3  =  - 2\), đây không phải là một số chính phương. Do đó, ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy \(M\left( x \right) = \frac{{0,0001{x^2} + 0,2x + 10\,000}}{x} = 0,0001x + \frac{{10\,000}}{x} + 0,2\).

Xét hàm số \(M\left( x \right) = 0,0001x + \frac{{10\,000}}{x} + 0,2\), với \(x \ge 1\).

Ta có: \(M'\left( x \right) = 0,0001 - \frac{{10\,000}}{{{x^2}}}\);

\(M'\left( x \right) = 0 \Leftrightarrow x = 10\,000\,\,\,\left( {{\rm{do}}\,\,x \ge 1} \right)\).

Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left[ {1;\, + \infty } \right)} M\left( x \right) = 2,2\) tại \(x = 10\,000\).

Vậy doanh nghiệp cần sản xuất \(10\,000\) sản phẩm để chi phí trung bình là nhỏ nhất.

Đáp số: \(10\,000\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\)\(\left( {0; - 1} \right)\), chính là đường thẳng \(y = x - 1\).

Do đó, đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP