Câu hỏi:
10/10/2024 11,785Cho hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}}\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).
b) Hàm số đã cho có 2 cực trị.
c) Đồ thị hàm số nhận điểm \(I\left( {2;2} \right)\) là tâm đối xứng.
d) Có 5 điểm thuộc đồ thị hàm số có tọa độ nguyên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) S.
Hướng dẫn giải
Xét hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}} = x - \frac{3}{{x - 2}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}\).
– Ta có \(y' = 1 + \frac{3}{{{{\left( {x - 2} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne 2\).
– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). Do đó, ý a) đúng.
– Hàm số không có cực trị. Do đó, ý b) sai.
– Tiệm cận: \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - \frac{3}{{x - 2}}} \right) = + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - \frac{3}{{x - 2}}} \right) = - \infty \);
\(\mathop {\lim }\limits_{x \to - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0;\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\).
Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận xiên là đường thẳng \(y = x\). Vậy tâm đối xứng của đồ thị hàm số là giao điểm \(I\left( {2;\,2} \right)\) của hai đường tiệm cận nên ý c) đúng.
– Với \(x \in \mathbb{Z}\backslash \left\{ 2 \right\}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi \(\frac{3}{{x - 2}} \in \mathbb{Z}\), tức là \(x - 2 \in U\left( 3 \right) = \left\{ { \pm 1;\, \pm 3} \right\}\).
Ta có:
\(x - 2\) |
\( - 3\) |
\( - 1\) |
\(1\) |
\(3\) |
\(x\) |
\( - 1\) |
\(1\) |
\(3\) |
\(5\) |
\(y = x - \frac{3}{{x - 2}}\) |
\(0\) |
\(4\) |
\(0\) |
\(4\) |
Vậy có 4 điểm thuộc đồ thị hàm số có tọa độ nguyên nên ý d) sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\). Đáy \(ABCD\) có tâm là \(O\). Khi đó:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {SO} \).
b) \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
c) \(\left( {\overrightarrow {SA} ,\,\overrightarrow {AC} } \right) = 45^\circ \).
d) \(\overrightarrow {SA} \cdot \overrightarrow {AC} = - {a^2}\).
Câu 3:
Câu 4:
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới?
Câu 5:
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây.
Xét hàm số \(g\left( x \right) = f\left( x \right) - x\). Hàm số \(g\left( x \right)\) có bao nhiêu điểm cực trị?
Câu 6:
Quan sát bảng biến thiên dưới đây và cho biết bảng biến thiên đó là của hàm số nào?
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!