Câu hỏi:

10/10/2024 6,953 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây.

Xét hàm số \(g\left( x \right) = f\left( x \right) - x\). Hàm số \(g\left( x \right)\) có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) nên hàm số \(y = g\left( x \right)\) cũng xác định trên \(\mathbb{R}\).

Ta có \(g'\left( x \right) = f'\left( x \right) - 1\); \(g'\left( x \right) = 0\) khi \(f'\left( x \right) = 1\).

Số nghiệm của phương trình \(g'\left( x \right) = 0\) là số giao điểm của đồ thị hàm số \(y = f'\left( x \right)\) và đường thẳng \(y = 1\).

Căn cứ vào đồ thị hàm số, ta thấy phương trình \(f'\left( x \right) = 1\) hay \(g'\left( x \right) = 0\) có 4 nghiệm phân biệt. Gọi 4 nghiệm đó theo thứ tự từ bé đến lớn là \(a,\,b,\,c,\,d\).

Dựa vào vị trí của đồ thị hàm số  \(y = f'\left( x \right)\) và đường thẳng \(y = 1\), ta có bảng xét dấu \(g'\left( x \right)\) như sau:

Vậy hàm số \(g\left( x \right) = f\left( x \right) - x\) có 4 điểm cực trị.

Đáp số: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}} = x - \frac{3}{{x - 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}\).

– Ta có \(y' = 1 + \frac{3}{{{{\left( {x - 2} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne 2\).

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\). Do đó, ý a) đúng.

– Hàm số không có cực trị. Do đó, ý b) sai.

– Tiệm cận: \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - \frac{3}{{x - 2}}} \right) =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - \frac{3}{{x - 2}}} \right) =  - \infty \);

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\).

Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận xiên là đường thẳng \(y = x\). Vậy tâm đối xứng của đồ thị hàm số là giao điểm \(I\left( {2;\,2} \right)\) của hai đường tiệm cận nên ý c) đúng.

– Với \(x \in \mathbb{Z}\backslash \left\{ 2 \right\}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi \(\frac{3}{{x - 2}} \in \mathbb{Z}\), tức là \(x - 2 \in U\left( 3 \right) = \left\{ { \pm 1;\, \pm 3} \right\}\).

Ta có:

\(x - 2\)

\( - 3\)

\( - 1\)

\(1\)

\(3\)

\(x\)

\( - 1\)

\(1\)

\(3\)

\(5\)

\(y = x - \frac{3}{{x - 2}}\)

\(0\)

\(4\)

\(0\)

\(4\)

 

Vậy có 4 điểm thuộc đồ thị hàm số có tọa độ nguyên nên ý d) sai.

Lời giải

a) S, b) Đ, c) S, d) Đ.

Hướng dẫn giải

\(S.ABCD\) là hình chóp tứ giác đều nên đáy \(ABCD\) là hình vuông.

Suy ra tâm \(O\) là trung điểm của các đường chéo \(AC\)\(BD\).

Do đó, \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 \)\(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) nên ý a) sai.

Với điểm \(S\), ta có: \(\left\{ \begin{array}{l}\overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \\\overrightarrow {SB}  + \overrightarrow {SD}  = 2\overrightarrow {SO} \end{array} \right.\). Suy ra \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \) nên ý b) đúng.

Tứ giác \(ABCD\) là hình vuông có độ dài mỗi cạnh là \(a\) nên độ dài đường chéo \(AC\)\(a\sqrt 2 \). Tam giác \(SAC\)\(SA = SC = a\)\(AC = a\sqrt 2 \) nên tam giác \(SAC\) vuông cân tại \(S\), suy ra \(\widehat {SAC} = 45^\circ \). Do đó, \(\left( {\overrightarrow {SC} ,\,\overrightarrow {AC} } \right) = 180^\circ  - \widehat {SAC} = 180^\circ  - 45^\circ  = 135^\circ \).

Suy ra \(\overrightarrow {SA}  \cdot \overrightarrow {AC}  = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos 135^\circ  = a \cdot a\sqrt 2  \cdot \left( { - \frac{{\sqrt 2 }}{2}} \right) =  - {a^2}\).

Vậy ý c) sai và ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP