Câu hỏi:

10/10/2024 5,990 Lưu

Ngân có một tấm giấy màu có dạng nửa hình tròn bán kính 8 cm. Ngân cần cắt từ tấm giấy màu này ra một tấm giấy hình chữ nhật có một cạnh thuộc đường kính của nửa hình tròn (xem hình dưới) sao cho diện tích của tấm bìa được cắt ra là lớn nhất. Giá trị lớn nhất của diện tích tấm bìa đó là bao nhiêu centimét vuông?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\,\,\left( {{\rm{cm}}} \right)\) là độ dài một cạnh của tấm giấy hình chữ nhật được cắt ra (cạnh thuộc đường kính) và \(y\,\,\left( {{\rm{cm}}} \right)\) là độ dài cạnh còn lại \((0 < x < 16,\,\,0 < y < 8)\). Ta có:

\({\left( {\frac{x}{2}} \right)^2} + {y^2} = {8^2} \Leftrightarrow {y^2} = \frac{1}{4}\left( {256 - {x^2}} \right) \Leftrightarrow y = \frac{1}{2}\sqrt {256 - {x^2}} \).

Diện tích của tấm giấy hình chữ nhật đó là:

\(S = xy = x \cdot \frac{1}{2}\sqrt {256 - {x^2}}  = \frac{1}{2}\sqrt {{x^2}\left( {256 - {x^2}} \right)} \) (cm2).

Đặt \(f\left( x \right) = {x^2}\left( {256 - {x^2}} \right)\) với \(0 < x < 16\), có \(f'\left( x \right) = 512x - 4{x^3}\) nên \(f'\left( x \right) = 0\) khi \(x = 8\sqrt 2 \).

Vậy giá trị lớn nhất của \(S\) bằng \(\frac{1}{2}\sqrt {f\left( {8\sqrt 2 } \right)}  = 64\,\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Đáp số: \(64\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}} = x - \frac{3}{{x - 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}\).

– Ta có \(y' = 1 + \frac{3}{{{{\left( {x - 2} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne 2\).

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\). Do đó, ý a) đúng.

– Hàm số không có cực trị. Do đó, ý b) sai.

– Tiệm cận: \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - \frac{3}{{x - 2}}} \right) =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - \frac{3}{{x - 2}}} \right) =  - \infty \);

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\).

Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận xiên là đường thẳng \(y = x\). Vậy tâm đối xứng của đồ thị hàm số là giao điểm \(I\left( {2;\,2} \right)\) của hai đường tiệm cận nên ý c) đúng.

– Với \(x \in \mathbb{Z}\backslash \left\{ 2 \right\}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi \(\frac{3}{{x - 2}} \in \mathbb{Z}\), tức là \(x - 2 \in U\left( 3 \right) = \left\{ { \pm 1;\, \pm 3} \right\}\).

Ta có:

\(x - 2\)

\( - 3\)

\( - 1\)

\(1\)

\(3\)

\(x\)

\( - 1\)

\(1\)

\(3\)

\(5\)

\(y = x - \frac{3}{{x - 2}}\)

\(0\)

\(4\)

\(0\)

\(4\)

 

Vậy có 4 điểm thuộc đồ thị hàm số có tọa độ nguyên nên ý d) sai.

Lời giải

a) S, b) Đ, c) S, d) Đ.

Hướng dẫn giải

\(S.ABCD\) là hình chóp tứ giác đều nên đáy \(ABCD\) là hình vuông.

Suy ra tâm \(O\) là trung điểm của các đường chéo \(AC\)\(BD\).

Do đó, \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 \)\(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) nên ý a) sai.

Với điểm \(S\), ta có: \(\left\{ \begin{array}{l}\overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \\\overrightarrow {SB}  + \overrightarrow {SD}  = 2\overrightarrow {SO} \end{array} \right.\). Suy ra \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \) nên ý b) đúng.

Tứ giác \(ABCD\) là hình vuông có độ dài mỗi cạnh là \(a\) nên độ dài đường chéo \(AC\)\(a\sqrt 2 \). Tam giác \(SAC\)\(SA = SC = a\)\(AC = a\sqrt 2 \) nên tam giác \(SAC\) vuông cân tại \(S\), suy ra \(\widehat {SAC} = 45^\circ \). Do đó, \(\left( {\overrightarrow {SC} ,\,\overrightarrow {AC} } \right) = 180^\circ  - \widehat {SAC} = 180^\circ  - 45^\circ  = 135^\circ \).

Suy ra \(\overrightarrow {SA}  \cdot \overrightarrow {AC}  = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos 135^\circ  = a \cdot a\sqrt 2  \cdot \left( { - \frac{{\sqrt 2 }}{2}} \right) =  - {a^2}\).

Vậy ý c) sai và ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP