Câu hỏi:

10/10/2024 725 Lưu

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong bốn hàm số ở các phương án A, B, C, D. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Quan sát hình vẽ, ta thấy đây là dáng của đồ thị hàm số phân thức bậc hai trên bậc nhất, do đó ta loại phương án B và D.

Mặt khác, ta thấy đường thẳng \(x = 0\) (trục tung) là tiệm cận đứng của đồ thị hàm số đã cho, do vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vận tốc tức thời của chất điểm là \(v = s' =  - \pi \sin \left( {2\pi t} \right)\).

Gia tốc tức thời của chất điểm là \(a = v' =  - 2{\pi ^2}\cos \left( {2\pi t} \right)\).

Ta có: \( - 1 \le \cos \left( {2\pi t} \right) \le 1\)\( \Leftrightarrow  - 2{\pi ^2} \le  - 2{\pi ^2}\cos \left( {2\pi t} \right) \le 2{\pi ^2}\) với mọi \(t\).

Tức là \( - 2{\pi ^2} \le a \le 2{\pi ^2}\). Vậy \({a_{\max }} = 2{\pi ^2} \approx 19,7\) với \(\cos \left( {2\pi t} \right) =  - 1 \Rightarrow t = \frac{1}{2} + k,\,k \in \mathbb{Z}\).

Vậy gia tốc lớn nhất của chất điểm bằng khoảng \(19,7\) m/s2.

Đáp số: \(19,7\).

Lời giải

Từ giả thiết, ta suy ra được:

\(\overrightarrow a  \bot \overrightarrow b ;\,\,\cos \left( {\overrightarrow a ,\,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }}\); \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}\).

Giả sử lực tổng hợp là \(\overrightarrow m \), tức là \(\overrightarrow m  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c \).

Khi đó, \({\overrightarrow m ^2} = {\left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2}\)\( = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a  \cdot \overrightarrow b  + 2\overrightarrow b  \cdot \overrightarrow c  + 2\overrightarrow c  \cdot \overrightarrow a \)

\( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 0 + 2\left| {\overrightarrow b } \right| \cdot \left| {\overrightarrow c } \right| \cdot \cos \left( {\overrightarrow b ,\overrightarrow c } \right) + 2\left| {\overrightarrow c } \right| \cdot \left| {\overrightarrow a } \right| \cdot \cos \left( {\overrightarrow c ,\overrightarrow a } \right)\)

\( = {10^2} + {10^2} + {20^2} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }}\)

\( = 600 + \frac{{800}}{{\sqrt 3 }}\).

Suy ra \({\left| {\overrightarrow m } \right|^2} = {\overrightarrow m ^2} = 600 + \frac{{800}}{{\sqrt 3 }}\). Do đó, \(\left| {\overrightarrow m } \right| = \sqrt {600 + \frac{{800}}{{\sqrt 3 }}}  \approx 32,6\).

Vậy độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng khoảng \(32,6\) N.

Đáp số: \(32,6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP