Câu hỏi:

10/10/2024 1,357 Lưu

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB\, = a\), \(AA' = a\sqrt 2 \).

a) \(\overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {CC'} \).

b) \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).

c) \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \frac{{{a^2}}}{2}\).

d) \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) Đ, c) S, d) Đ.

Hướng dẫn giải

– Vì \(ABC.A'B'C'\) là lăng trụ tam giác đều nên \(\overrightarrow {CC'}  = \overrightarrow {BB'} \).

Theo quy tắc ba điểm ta có: \(\overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {BB'}  = \overrightarrow {AB}  + \overrightarrow {CC'} \). Vậy ý a) đúng.

– Ta có \(ABB'A',\,\,BCC'B'\) là các hình chữ nhật có hai kích thước là \(a\)\(a\sqrt 2 \).

Do đó, \(AB' = BC' = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = a\sqrt 3 \). Suy ra \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).

Vậy ý b) đúng.

– Ta có \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \left( {\overrightarrow {AB}  + \overrightarrow {BB'} } \right) \cdot \left( {\overrightarrow {BC}  + \overrightarrow {CC'} } \right)\)

\( = \overrightarrow {AB}  \cdot \overrightarrow {BC}  + \overrightarrow {AB}  \cdot \overrightarrow {CC'}  + \overrightarrow {BB'}  \cdot \overrightarrow {BC}  + \overrightarrow {BB'}  \cdot \overrightarrow {CC'} \)

\( =  - AB \cdot BC \cdot \cos \widehat {BAC} + 0 + 0 + B{B'^2}\)

\( =  - a \cdot a \cdot \cos 60^\circ  + {\left( {a\sqrt 2 } \right)^2}\)\( = \frac{{3{a^2}}}{2}\).

Suy ra \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'}  \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3  \cdot a\sqrt 3 }} = \frac{1}{2}\). Do đó, \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Vậy ý c) sai và ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vận tốc tức thời của chất điểm là \(v = s' =  - \pi \sin \left( {2\pi t} \right)\).

Gia tốc tức thời của chất điểm là \(a = v' =  - 2{\pi ^2}\cos \left( {2\pi t} \right)\).

Ta có: \( - 1 \le \cos \left( {2\pi t} \right) \le 1\)\( \Leftrightarrow  - 2{\pi ^2} \le  - 2{\pi ^2}\cos \left( {2\pi t} \right) \le 2{\pi ^2}\) với mọi \(t\).

Tức là \( - 2{\pi ^2} \le a \le 2{\pi ^2}\). Vậy \({a_{\max }} = 2{\pi ^2} \approx 19,7\) với \(\cos \left( {2\pi t} \right) =  - 1 \Rightarrow t = \frac{1}{2} + k,\,k \in \mathbb{Z}\).

Vậy gia tốc lớn nhất của chất điểm bằng khoảng \(19,7\) m/s2.

Đáp số: \(19,7\).

Lời giải

Từ giả thiết, ta suy ra được:

\(\overrightarrow a  \bot \overrightarrow b ;\,\,\cos \left( {\overrightarrow a ,\,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }}\); \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}\).

Giả sử lực tổng hợp là \(\overrightarrow m \), tức là \(\overrightarrow m  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c \).

Khi đó, \({\overrightarrow m ^2} = {\left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2}\)\( = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a  \cdot \overrightarrow b  + 2\overrightarrow b  \cdot \overrightarrow c  + 2\overrightarrow c  \cdot \overrightarrow a \)

\( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 0 + 2\left| {\overrightarrow b } \right| \cdot \left| {\overrightarrow c } \right| \cdot \cos \left( {\overrightarrow b ,\overrightarrow c } \right) + 2\left| {\overrightarrow c } \right| \cdot \left| {\overrightarrow a } \right| \cdot \cos \left( {\overrightarrow c ,\overrightarrow a } \right)\)

\( = {10^2} + {10^2} + {20^2} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }}\)

\( = 600 + \frac{{800}}{{\sqrt 3 }}\).

Suy ra \({\left| {\overrightarrow m } \right|^2} = {\overrightarrow m ^2} = 600 + \frac{{800}}{{\sqrt 3 }}\). Do đó, \(\left| {\overrightarrow m } \right| = \sqrt {600 + \frac{{800}}{{\sqrt 3 }}}  \approx 32,6\).

Vậy độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng khoảng \(32,6\) N.

Đáp số: \(32,6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP