Câu hỏi:

10/10/2024 877 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào sau đây là đúng?

A. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).

B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

C. Hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\].

D. Hàm số đã cho nghịch biến trên khoảng \[\left( { - 3;\,1} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Từ đồ thị hàm số, ta thấy hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\]; nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(\overrightarrow F  = \left( {x;y;z} \right)\), ta có:

\(x = 200 \cdot \cos 60^\circ  \cdot \cos 45^\circ  = 50\sqrt 2 \);

\(y =  - 200 \cdot \cos 60^\circ  \cdot \cos 45^\circ  =  - 50\sqrt 2 \);

\(z = 200 \cdot \sin 60^\circ  = 100\sqrt 3 \).

Do đó, \(\overrightarrow F  = \left( {50\sqrt 2 ; - 50\sqrt 2 ;100\sqrt 3 } \right)\).

Suy ra \(a = 50,b = 50,c = 100\). Vậy \(K = a - 2b + c = 50 - 2 \cdot 50 + 100 = 50\).

Đáp số: \(50\).

Câu 2

A. \(y = \frac{{{x^2} + 2x + 2}}{{ - x - 1}}\).
B. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).
C. \(y = \frac{{{x^2} - 2x + 2}}{{x - 1}}\).
D. \(y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số đã cho ta có:

+ Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 1\) nên ta loại phương án C.

+ Đồ thị hàm số có tiệm cận xiên là đường thẳng đi xuống từ trái qua phải nên \(a,\,m\) trái dấu. Vậy phương án đúng là A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP