Câu hỏi:

10/10/2024 1,350

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{4}{{{{\left( {x + 1} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne  - 1\).

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho không có cực trị. Do đó, ý b) sai.

– Tiệm cận:

+) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 3}}{{x + 1}} = 1;\,\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 3}}{{x + 1}} = 1\). Do đó, tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng \(y = 1\).

+) \(\mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{x - 3}}{{x + 1}} =  - \infty ;\,\mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{x - 3}}{{x + 1}} =  + \infty \). Do đó, tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 1\).

Vậy ý c) đúng.

– Phương trình hoành độ giao điểm của đường thẳng \(y = x + 2m\,\,\left( d \right)\) và đồ thị hàm số \(y = \frac{{x - 3}}{{x + 1}}\,\,\left( C \right)\) là: \(\frac{{x - 3}}{{x + 1}} = x + 2m\)\( \Leftrightarrow \left( {x + 1} \right)\left( {x + 2m} \right) = x - 3\)\( \Leftrightarrow {x^2} + 2mx + 2m + 3 = 0\).

Xét hàm số \(g\left( x \right) = {x^2} + 2mx + 2m + 3\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại hai điểm nằm về hai phía của trục tung khi phương trình \(g\left( x \right) = 0\) có hai nghiệm \({x_1};\,{x_2}\) khác \( - 1\)\({x_1}{x_2} < 0\). Điều này xảy ra khi và chỉ khi

\[\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}{\Delta _g} > 0\\g\left( { - 1} \right) \ne 0\end{array}\\{\frac{c}{a} < 0\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m - 3 > 0\\1 - 2m + 2m + 3 \ne 0\\2m + 3 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m <  - 1\\m > 3\end{array} \right.\\m <  - \frac{3}{2}\end{array} \right.\)\( \Leftrightarrow m <  - \frac{3}{2}\).

\(m \in \mathbb{Z},\,\,m \in \left[ { - 2\,024;\,2\,024} \right]\) nên \(m \in \left\{ { - 2\,024;\, - 2\,023;\,...; - 2} \right\}\).

Vậy có \(2\,023\) giá trị của \(m\) thỏa mãn.

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.

Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F  = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 6,490

Câu 2:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?

Xem đáp án » 10/10/2024 1,908

Câu 3:

Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) =  - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?

Xem đáp án » 10/10/2024 1,887

Câu 4:

Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:

Xem đáp án » 10/10/2024 1,482

Câu 5:

Chọn khẳng định sai. Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có:

Xem đáp án » 10/10/2024 1,135

Câu 6:

Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá \(30\,000\) đồng một chiếc và mỗi tháng cơ sở bán được trung bình \(3\,000\) chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhuận tốt hơn. Sau khi tham khảo thị trường, người quản lí thấy rằng nếu từ mức giá \(30\,000\) đồng mà cứ tăng thêm \(1\,000\) đồng thì mỗi tháng sẽ bán ít hơn \(100\) chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là \(18\,000\) đồng. Hỏi cơ sở sản xuất phải bán với giá mới là bao nhiêu nghìn đồng để đạt lợi nhuận lớn nhất?

Xem đáp án » 10/10/2024 1,084

Bình luận


Bình luận