Câu hỏi:
10/10/2024 2,007Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
TXĐ của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\); \(y' = 0 \Leftrightarrow x = - 1\) hoặc \(x = 3\).
Bảng biến thiên của hàm số như sau:
Căn cứ vào bảng biến thiên, ta thấy hàm số đạt cực đại tại \(x = - 1\), giá trị cực đại ; đạt cực tiểu tại \(x = 3\), giá trị cực tiểu \({y_{CT}} = 6\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(\overrightarrow F = \left( {x;y;z} \right)\), ta có:
\(x = 200 \cdot \cos 60^\circ \cdot \cos 45^\circ = 50\sqrt 2 \);
\(y = - 200 \cdot \cos 60^\circ \cdot \cos 45^\circ = - 50\sqrt 2 \);
\(z = 200 \cdot \sin 60^\circ = 100\sqrt 3 \).
Do đó, \(\overrightarrow F = \left( {50\sqrt 2 ; - 50\sqrt 2 ;100\sqrt 3 } \right)\).
Suy ra \(a = 50,b = 50,c = 100\). Vậy \(K = a - 2b + c = 50 - 2 \cdot 50 + 100 = 50\).
Đáp số: \(50\).
Lời giải
Tập xác định của hàm số là \(\mathbb{R}\).
Ta có: \(y' = 3{x^2} - 6x + m + 1\).
Hàm số đã cho có hai điểm cực trị khi \(y' = 0\) có hai nghiệm phân biệt, tức là \({\Delta _{y'}} > 0\)
\( \Leftrightarrow {\left( { - 3} \right)^2} - 3\left( {m + 1} \right) > 0 \Leftrightarrow 6 - 3m > 0 \Leftrightarrow m < 2\).
Vì \(m \in \mathbb{Z},\,m > 0\) nên \(m = 1\). Vậy có 1 giá trị của \(m\) thỏa mãn.
Đáp số: \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.