Một ô tô dự định đi từ \[A\] đến \[B\] trong một thời gian nhất định với một vận tốc xác định.
Dữ kiện 1. Nếu ô tô tăng vận tốc thêm \[15\] km/h thì sẽ đến \[B\] sớm hơn \[2\] giờ so với dự định.
Dữ kiện 2. Nếu ô tô giảm vận tốc đi \[5\] km/h thì sẽ đến \[B\] muộn \[1\] giờ so với dự định.
Gọi \(x\) và \[y\] lần lượt là vận tốc dự định và thời gian dự định của ô tô đi hết quãng đường \[AB\].
Khẳng định nào sau đây là đúng?
A. Từ dữ kiện 1, ta có phương trình \[2x - 15y = 30.\]
B. Từ dữ kiện 2, ta có phương trình \[x - 5y = 5.\]
C. Hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\) là \[\left\{ \begin{array}{l}2x - 15y = 30\\x - 5y = 5.\end{array} \right.\]
D. Cả A, B, C đều đúng.
Quảng cáo
Trả lời:

Đáp án đúng là: B
Quãng đường \[AB\] là \[xy\] (km).
⦁ Nếu ô tô tăng vận tốc thêm \[15\] km/h thì vận tốc của ô tô là \[x + 15\] (km/h).
Khi đó ô tô đến \[B\] sớm hơn dự định là \[2\] giờ nên thời gian ô tô đi từ \[A\] đến \[B\] là \[y - 2\] (giờ).
Vì vậy ta có phương trình \[\left( {x + 15} \right)\left( {y - 2} \right) = xy\] hay \[xy - 2x + 15y - 30 = xy.\]
Tức là, \[ - 2x + 15y = 30\] (1)
⦁ Nếu ô tô giảm vận tốc đi \[5\] km/h thì vận tốc của ô tô là \[x - 5\] (km/h).
Khi đó ô đến \[B\] muộn hơn dự định là \[1\] giờ nên thời gian ô tô đi là \[y + 1\] (giờ).
Vì vậy ta có phương trình \[\left( {x - 5} \right)\left( {y + 1} \right) = xy\] hay \[xy + x - 5y - 5 = xy.\]
Tức là, \[x - 5y = 5\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l} - 2x + 15y = 30\\x - 5y = 5.\end{array} \right.\]
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\left\{ \begin{array}{l}x + y = 750\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
B. \[\left\{ \begin{array}{l}x + y = 750\\8x + 9y = 6\,\,300.\end{array} \right.\]
C. \[\left\{ \begin{array}{l}\frac{4}{5}x + \frac{4}{5}y = 600\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
D. Cả A, B, C đều đúng.
Lời giải
Đáp án đúng là: D
Gọi giá gốc của quyển từ điển và món đồ chơi lần lượt là \[x,y\] (nghìn đồng).
Điều kiện: \[0 < x,y < 750.\]
Tổng số tiền của quyển từ điển và món đồ chơi là \[750\] nghìn đồng, nên ta có phương trình \[x + y = 750\] (1)
Do quyển từ điển được giảm \[20\% \] và món đồ chơi được giảm \[10\% \] nên Bình chỉ trả \[630\] nghìn đồng. Khi đó ta có phương trình \[\left( {100\% - 20\% } \right)x + \left( {100\% - 10\% } \right)y = 630\] hay \[\frac{4}{5}x + \frac{9}{{10}}y = 630\] (2)
Từ (1), (2) ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 750\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
⦁ Khi nhân hai vế của phương trình thứ hai với 10, ta được hệ phương trình \[\left\{ \begin{array}{l}x + y = 750\\8x + 9y = 6\,\,300.\end{array} \right.\]
⦁ Khi nhân hai vế của phương trình thứ nhất với \(\frac{4}{5}\), ta được hệ phương trình \[\left\{ \begin{array}{l}\frac{4}{5}x + \frac{4}{5}y = 600\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
Do đó cả A, B, C đều đúng.
Vậy ta chọn phương án D.
Câu 2
A. \[25\] triệu đồng.
B. \[16,6\] triệu đồng.
C. \[17\] triệu đồng.
D. \[20\] triệu đồng.
Lời giải
Đáp án đúng là: D
Gọi \[x\] (triệu đồng) là giá niêm yết của máy hút ẩm và \[y\] (triệu đồng) là giá niêm yết của quạt cây \[\left( {0 < x < 9,\,\,0 < y < 9} \right).\]
Tổng số tiền của máy hút ẩm và quạt cây là \[9\] triệu đồng nên ta có phương trình \[x + y = 9\] (1)
Khi máy hút ẩm được giảm \[20\% \] so với giá niêm yết và quạt cây được giảm \[10\% \] so với giá niêm yết thì số tiền được giảm giá là 1,6 triệu đồng nên ta có phương trình:
\[20\% .x + 10\% .y = 1,6\] hay \[\frac{1}{5}x + \frac{1}{{10}}y = 1,6\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\frac{1}{5}x + \frac{1}{{10}}y = 1,6\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (1), ta có \[x = 9 - y\] (*)
Thế (*) vào phương trình (2), ta được \[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\].
Giải phương trình:
\[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\]
\[\frac{9}{5} - \frac{1}{5}y + \frac{1}{{10}}y = 1,6\].
\[ - \frac{1}{{10}}y = - \frac{1}{5}\]
\[y = 2\] (thỏa mãn điều kiện).
Thế \[y = 2\] vào phương trình (*), ta được \[x = 9 - y = 9 - 2 = 7\] (thỏa mãn điều kiện).
Vì vậy giá niêm yết của máy hút ẩm là \[7\] triệu đồng và quạt cây là \[2\] triệu đồng.
Do đó số tiền theo giá niêm yết bác Xuân phải trả cho siêu thị khi mua hai máy hút ẩm và ba cái quạt cây là: \[2.7 + 3.2 = 20\] (triệu đồng).
Vậy ta chọn phương án D.
</>
Câu 3
A. \[\left\{ \begin{array}{l}x + y = 700\\15\% x + 20\% y = 820.\end{array} \right.\]
B. \[\left\{ \begin{array}{l}x + y = 700\\\frac{{23}}{{20}}x + \frac{6}{5}y = 820.\end{array} \right.\]
C. \[\left\{ \begin{array}{l}x + y = 700\\15x + 20y = 820.\end{array} \right.\]
D. \[\left\{ \begin{array}{l}x + y = 700\\23x + 24y = 820.\end{array} \right.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Phòng học ban đầu có \[10\] dãy ghế, mỗi dãy có \[20\] ghế.
B. Phòng học ban đầu có \[12\] dãy ghế, mỗi dãy có \[15\] ghế.
C. Phòng học ban đầu có \[10\] dãy ghế, mỗi dãy có \[25\] ghế.
D. Phòng học ban đầu có \[20\] dãy ghế, mỗi dãy có \[10\] ghế.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\left\{ \begin{array}{l}15x - y = - 5\\16x - y = 3.\end{array} \right.\]
B. \[\left\{ \begin{array}{l}15x - y = 5\\16x - y = - 3.\end{array} \right.\]
C. \[\left\{ \begin{array}{l}15x - y = 5\\16x - y = 3.\end{array} \right.\]
D. \[\left\{ \begin{array}{l}15x - y = - 5\\16x - y = - 3.\end{array} \right.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\left\{ \begin{array}{l}x + y = 6\\x + y = 1.\end{array} \right.\]
B. \[\left\{ \begin{array}{l}x + y = \frac{1}{6}\\x + y = 1.\end{array} \right.\]
C. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = 6\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]
D. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.