Một ô tô dự định đi từ \[A\] đến \[B\] trong một thời gian nhất định với một vận tốc xác định.
Dữ kiện 1. Nếu ô tô tăng vận tốc thêm \[15\] km/h thì sẽ đến \[B\] sớm hơn \[2\] giờ so với dự định.
Dữ kiện 2. Nếu ô tô giảm vận tốc đi \[5\] km/h thì sẽ đến \[B\] muộn \[1\] giờ so với dự định.
Gọi \(x\) và \[y\] lần lượt là vận tốc dự định và thời gian dự định của ô tô đi hết quãng đường \[AB\].
Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Quãng đường \[AB\] là \[xy\] (km).
⦁ Nếu ô tô tăng vận tốc thêm \[15\] km/h thì vận tốc của ô tô là \[x + 15\] (km/h).
Khi đó ô tô đến \[B\] sớm hơn dự định là \[2\] giờ nên thời gian ô tô đi từ \[A\] đến \[B\] là \[y - 2\] (giờ).
Vì vậy ta có phương trình \[\left( {x + 15} \right)\left( {y - 2} \right) = xy\] hay \[xy - 2x + 15y - 30 = xy.\]
Tức là, \[ - 2x + 15y = 30\] (1)
⦁ Nếu ô tô giảm vận tốc đi \[5\] km/h thì vận tốc của ô tô là \[x - 5\] (km/h).
Khi đó ô đến \[B\] muộn hơn dự định là \[1\] giờ nên thời gian ô tô đi là \[y + 1\] (giờ).
Vì vậy ta có phương trình \[\left( {x - 5} \right)\left( {y + 1} \right) = xy\] hay \[xy + x - 5y - 5 = xy.\]
Tức là, \[x - 5y = 5\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l} - 2x + 15y = 30\\x - 5y = 5.\end{array} \right.\]
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi giá gốc của quyển từ điển và món đồ chơi lần lượt là \[x,y\] (nghìn đồng).
Điều kiện: \[0 < x,y < 750.\]
Tổng số tiền của quyển từ điển và món đồ chơi là \[750\] nghìn đồng, nên ta có phương trình \[x + y = 750\] (1)
Do quyển từ điển được giảm \[20\% \] và món đồ chơi được giảm \[10\% \] nên Bình chỉ trả \[630\] nghìn đồng. Khi đó ta có phương trình \[\left( {100\% - 20\% } \right)x + \left( {100\% - 10\% } \right)y = 630\] hay \[\frac{4}{5}x + \frac{9}{{10}}y = 630\] (2)
Từ (1), (2) ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 750\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
⦁ Khi nhân hai vế của phương trình thứ hai với 10, ta được hệ phương trình \[\left\{ \begin{array}{l}x + y = 750\\8x + 9y = 6\,\,300.\end{array} \right.\]
⦁ Khi nhân hai vế của phương trình thứ nhất với \(\frac{4}{5}\), ta được hệ phương trình \[\left\{ \begin{array}{l}\frac{4}{5}x + \frac{4}{5}y = 600\\\frac{4}{5}x + \frac{9}{{10}}y = 630.\end{array} \right.\]
Do đó cả A, B, C đều đúng.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: B
Theo kế hoạch hai tổ phải sản xuất \[700\] sản phẩm, nên ta có phương trình \[x + y = 700\] (1)
Vì tổ một vượt mức \[15\% \] và tổ hai vượt mức \[20\% \] nên cả hai tổ làm được \[820\] sản phẩm nên ta có phương trình \[\left( {100\% + 15\% } \right)x + \left( {100\% + 20\% } \right)y = 820\] hay \[\frac{{23}}{{20}}x + \frac{6}{5}y = 820\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 700\\\frac{{23}}{{20}}x + \frac{6}{5}y = 820.\end{array} \right.\]
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.