Câu hỏi:

11/10/2024 220 Lưu

II. Vận dụng

Cho \[x + y > 1.\] Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Bình phương hai vế của bất đẳng thức \[x + y > 1,\] ta được: \[{x^2} + 2xy + {y^2} > 1\] (1)

Từ bất đẳng thức \[{\left( {x - y} \right)^2} \ge 0,\] ta có: \[{x^2} - 2xy + {y^2} \ge 0\] (2)

Cộng từng vế của (1) và (2), ta được:

\[2{x^2} + \left( {2xy - 2xy} \right) + 2{y^2} > 1 + 0\] hay \[2{x^2} + 2{y^2} > 1.\]

Tức là, \[2\left( {{x^2} + {y^2}} \right) > 1.\]

Khi đó \[{x^2} + {y^2} > \frac{1}{2}.\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu và ngược lại.

Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.

Vậy ta chọn phương án D.

</>

Câu 2

Lời giải

Đáp án đúng là: B

Ta có: \[x\] là số không âm nên \[x \ge 0.\]

Do đó ta chọn phương án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP