Cho các số thực \[a,b,c\] tùy ý. Khẳng định nào sau đây là đúng?
A. \[3\left( {{a^2} + {b^2} + {c^2}} \right) > {\left( {a + b + c} \right)^2}.\]
B. \[3\left( {{a^2} + {b^2} + {c^2}} \right) < {\left( {a + b + c} \right)^2}.\]
</>
C. \[3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}.\]
D. \[3\left( {{a^2} + {b^2} + {c^2}} \right) \le {\left( {a + b + c} \right)^2}.\]
Quảng cáo
Trả lời:

Đáp án đúng là: C
Ta có: \[3\left( {{a^2} + {b^2} + {c^2}} \right) - {\left( {a + b + c} \right)^2}\]
\[ = 3{a^2} + 3{b^2} + 3{c^2} - \left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)\]
\[ = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac\]
\[ = \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{a^2} - 2ac + {c^2}} \right)\]
\[ = {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2}\]
Với mọi số thực \[a,b,c\] tùy ý, ta có:
\[{\left( {a - b} \right)^2} \ge 0;\,\,\,{\left( {b - c} \right)^2} \ge 0;\,\,\,{\left( {a - c} \right)^2} \ge 0.\]
Do đó \[{\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} \ge 0.\]
Vì vậy \[3\left( {{a^2} + {b^2} + {c^2}} \right) - {\left( {a + b + c} \right)^2} \ge 0\] hay \[3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}.\]
Dấu “=” xảy ra khi và chỉ khi \[a = b = c.\]
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{a^2} > ab.\]
B. \[{a^2} \le ab.\]
C. \[{a^2} \ge ab.\]
D. \[{a^2} < ab.\]
</>
Lời giải
Đáp án đúng là: A
Vì \[a > b\] và \[a > 0\] nên \[a \cdot a > b \cdot a\] hay \[{a^2} > ab.\]
Vậy ta chọn phương án A.
Câu 2
A. \[a,b\] cùng dương.
B. \[a,b\] cùng âm.
C. \[a,b\] cùng dấu.
D. \[a,b\] trái dấu.
Lời giải
Đáp án đúng là: D
Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu và ngược lại.
Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.
Vậy ta chọn phương án D.
</>
Câu 3
A. \[x \le 0.\]
B. \[x \ge 0.\]
C. \[x < 0.\]
</>
D. \[x > 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[m + 4 < n + 4.\]
</>
B. \[m - 4 > n - 4.\]
C. \[m - 1 < n - 1.\]
</>
D. \[n + 1 > m + 1.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[x < y.\]
</>
B. \[x > y.\]
C. \[x \le y.\]
D. \[y \le x\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[2a < 2b.\]
B. \[ - 3a < - 3b.\]
C. \[4a > 4b.\]
D. \[3\left( {b + 1} \right) < 3\left( {a + 1} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[{x^2} + {y^2} = \frac{1}{2}.\]
B. \[{x^2} + {y^2} < \frac{1}{2}.\]
C. \[{x^2} + {y^2} \le \frac{1}{2}.\]
D. \[{x^2} + {y^2} > \frac{1}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.