Trong phương trình chứa ẩn ở mẫu, điều kiện xác định của phương trình là
A. Điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều bằng 0.
B. Điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0.
C. Điều kiện của ẩn để có ít nhất một mẫu thức trong phương trình khác 0.
D. Điều kiện của ẩn để tất cả các tử thức trong phương trình đều bằng 0.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Trong phương trình chứa ẩn ở mẫu, điều kiện xác định của phương trình là điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0.
Vậy ta chọn phương án B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\frac{{10}}{3}.\]
B. \[ - \frac{{10}}{3}.\]
C. \[\frac{8}{3}\].
D. \( - \frac{8}{3}\).
Lời giải
Đáp án đúng là: A
Điều kiện xác định: \[x \ne 1\] và \[x \ne 2.\]
\[\frac{4}{{x - 1}} - \frac{5}{{x - 2}} = - 3\]
\[\frac{{4\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{5\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 3\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[4\left( {x - 2} \right) - 5\left( {x - 1} \right) = - 3\left( {x - 1} \right)\left( {x - 2} \right)\]
\[4x - 8 - 5x + 5 = - 3\left( {{x^2} - 3x + 2} \right)\]
\[ - x - 3 = - 3{x^2} + 9x - 6\]
\[3{x^2} - 10x + 3 = 0\]
\[3{x^2} - 9x - x + 3 = 0\]
\[3x\left( {x - 3} \right) - \left( {x - 3} \right) = 0\]
\[\left( {x - 3} \right)\left( {3x - 1} \right) = 0\]
\[x - 3 = 0\] hoặc \[3x - 1 = 0\]
\[x = 3\] hoặc \[x = \frac{1}{3}.\]
Ta thấy \[x = 3\] và \[x = \frac{1}{3}\] thỏa mãn điều kiện của phương trình đã cho.
Như vậy phương trình đã cho có nghiệm là \[x = 3\] và \[x = \frac{1}{3}.\]
Tổng các nghiệm của phương trình đã cho là: \(3 + \frac{1}{3} = \frac{{10}}{3}\).
Vậy ta chọn phương án A.
Câu 2
A. \[x = - 10\] và \[x = 1.\]
B. \[x = 10\] và \[x = 2.\]
C. \[x = 6\] và \[x = 3.\]
D. \[x = 0\] và \[x = - 1.\]
Lời giải
Đáp án đúng là: A
Để giải phương trình đã cho, ta giải hai phương trình sau:
⦁ \[\frac{{2 + x}}{4} - \frac{x}{5} = 0\]
\[\frac{{5\left( {2 + x} \right)}}{{20}} - \frac{{4x}}{{20}} = 0\]
\[5\left( {2 + x} \right) - 4x = 0\]
\[10 + 5x - 4x = 0\]
\[x = - 10.\]
⦁ \[\frac{{3x + 5}}{6} - \frac{{13x - 1}}{9} = 0\]
\[\frac{{3\left( {3x + 5} \right)}}{{18}} - \frac{{2\left( {13x - 1} \right)}}{{18}} = 0\]
\[3\left( {3x + 5} \right) - 2\left( {13x - 1} \right) = 0\]
\[9x + 15 - 26x + 2 = 0\]
\[ - 17x + 17 = 0\]
\[17x = 17\]
\[x = 1.\]
Vậy phương trình đã cho có hai nghiệm là: \[x = - 10\] và \[x = 1.\]
Do đó ta chọn phương án A.
Câu 3
A. \[18\] (sản phẩm/giờ).
B. \[9\] (sản phẩm/giờ).
C. \[3\] (sản phẩm/giờ).
D. \[10\] (sản phẩm/giờ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Vô nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\left( {3x + 4} \right)\left( {x - 2} \right) = 0.\]
B. \[2x - 7 = - 5.\]
C. \[\left( {6 - x} \right)\left( {2 - 2x} \right) = - 3.\]
D. \[x\left( {x - 1} \right) - \left( {x - 2} \right)\left( {x + 2} \right) = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[x = - 7.\]
B. \[x = 7.\]
C. \[x = - \frac{7}{3}.\]
D. \[x = - \frac{3}{7}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.