Câu hỏi:
11/10/2024 1,021Phương trình \[\left( {\frac{{2 + x}}{4} - \frac{x}{5}} \right)\left( {\frac{{3x + 5}}{6} - \frac{{13x - 1}}{9}} \right) = 0\] có nghiệm là:
Quảng cáo
Trả lời:
Đáp án đúng là: A
Để giải phương trình đã cho, ta giải hai phương trình sau:
⦁ \[\frac{{2 + x}}{4} - \frac{x}{5} = 0\]
\[\frac{{5\left( {2 + x} \right)}}{{20}} - \frac{{4x}}{{20}} = 0\]
\[5\left( {2 + x} \right) - 4x = 0\]
\[10 + 5x - 4x = 0\]
\[x = - 10.\]
⦁ \[\frac{{3x + 5}}{6} - \frac{{13x - 1}}{9} = 0\]
\[\frac{{3\left( {3x + 5} \right)}}{{18}} - \frac{{2\left( {13x - 1} \right)}}{{18}} = 0\]
\[3\left( {3x + 5} \right) - 2\left( {13x - 1} \right) = 0\]
\[9x + 15 - 26x + 2 = 0\]
\[ - 17x + 17 = 0\]
\[17x = 17\]
\[x = 1.\]
Vậy phương trình đã cho có hai nghiệm là: \[x = - 10\] và \[x = 1.\]
Do đó ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi năng suất dự kiến của người công nhân là \[x\] (sản phẩm/giờ, \[x \in {\mathbb{N}^ * })\].
Năng suất thực tế của người công nhân là \[x + 3\] (sản phẩm/giờ).
Thời gian công nhân làm hết 33 sản phẩm theo dự kiến là: \[\frac{{33}}{x}\] (giờ).
Số sản phẩm người công nhân được giao trên thực tế là: \[33 + 29 = 62\] (sản phẩm).
Thời gian người công nhân đó làm trên thực tế là: \[\frac{{62}}{{x + 3}}\] (giờ)
Mặc dù mỗi giờ công nhân đó đã làm thêm 3 sản phẩm những vẫn hoàn thành chậm hơn dự kiến \[1\] giờ \[30\] phút \[ = \frac{3}{2}\] giờ, nên ta có phương trình: \[\frac{{62}}{{x + 3}} - \frac{{33}}{x} = \frac{3}{2}\].
Giải phương trình:
\[\frac{{62 \cdot 2x}}{{2x\left( {x + 3} \right)}} - \frac{{33 \cdot 2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{3x\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}}\]
\[62 \cdot 2x - 33 \cdot 2\left( {x + 3} \right) = 3x\left( {x + 3} \right)\]
\[124x - 66x - 198 = 3{x^2} + 9x\]
\[3{x^2} - 49x + 198 = 0\]
\[3{x^2} - 27x - 22x + 198 = 0\]
\[3x\left( {x - 9} \right) - 22\left( {x - 9} \right) = 0\]
\[\left( {x - 9} \right)\left( {3x - 22} \right) = 0\]
\[3x - 22 = 0\] hoặc \[x - 9 = 0\]
\[3x = 22\] hoặc \[x = 9\]
\[x = \frac{{22}}{3}\] (không thỏa mãn) hoặc \[x = 9\] (thỏa mãn).
Do đó năng suất dự kiến của công nhân đó là \[9\] (sản phẩm/giờ).
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: A
Điều kiện xác định: \[x \ne 1\] và \[x \ne 2.\]
\[\frac{4}{{x - 1}} - \frac{5}{{x - 2}} = - 3\]
\[\frac{{4\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{5\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 3\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[4\left( {x - 2} \right) - 5\left( {x - 1} \right) = - 3\left( {x - 1} \right)\left( {x - 2} \right)\]
\[4x - 8 - 5x + 5 = - 3\left( {{x^2} - 3x + 2} \right)\]
\[ - x - 3 = - 3{x^2} + 9x - 6\]
\[3{x^2} - 10x + 3 = 0\]
\[3{x^2} - 9x - x + 3 = 0\]
\[3x\left( {x - 3} \right) - \left( {x - 3} \right) = 0\]
\[\left( {x - 3} \right)\left( {3x - 1} \right) = 0\]
\[x - 3 = 0\] hoặc \[3x - 1 = 0\]
\[x = 3\] hoặc \[x = \frac{1}{3}.\]
Ta thấy \[x = 3\] và \[x = \frac{1}{3}\] thỏa mãn điều kiện của phương trình đã cho.
Như vậy phương trình đã cho có nghiệm là \[x = 3\] và \[x = \frac{1}{3}.\]
Tổng các nghiệm của phương trình đã cho là: \(3 + \frac{1}{3} = \frac{{10}}{3}\).
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.