Câu hỏi:
12/10/2024 49Với giá trị dương nào của \[m\] thì phương trình \[2x - {\left( {m - 2} \right)^2}y = 5\] nhận cặp số \[\left( { - 10; - 1} \right)\] làm nghiệm?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Thay \[x = - 10,y = - 1\] vào phương trình đã cho, ta được:
\[2 \cdot \left( { - 10} \right) - {\left( {m - 2} \right)^2} \cdot \left( { - 1} \right) = 5\]
\[ - 20 + {\left( {m - 2} \right)^2} = 5\]
\[{m^2} - 4m + 4 - 25 = 0\]
\[{m^2} - 4m - 21 = 0\]
\[{m^2} + 3m - 7m - 21 = 0\]
\[m\left( {m + 3} \right) - 7\left( {m + 3} \right) = 0\]
\[\left( {m + 3} \right)\left( {m - 7} \right) = 0\]
\(m + 3 = 0\) hoặc \(m - 7 = 0\)
\[m = - 3\] hoặc \[m = 7\]
So với điều kiện \[m > 0,\] ta nhận \[m = 7.\]
Vậy \[m = 7\] thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai ngăn của một kệ sách có tổng cộng \[500\] cuốn sách. Nếu chuyển \[75\] cuốn sách từ ngăn thứ nhất sang ngăn thứ hai thì số sách ở ngăn thứ hai gấp \[3\] lần số sách ở ngăn thứ nhất. Khi đó số sách ở ngăn thứ nhất và ngăn thứ hai ban đầu lần lượt là
Câu 2:
III. Vận dụng
Cho phương trình \[\frac{1}{{x + 1}} - \frac{{2{x^2} - m}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}.\] Biết \[x = 0\] là một nghiệm của phương trình. Nghiệm còn lại là
Câu 4:
Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy + 4\\\left( {x + 2} \right)\left( {y - 1} \right) = xy - 10\end{array} \right..\] Nghiệm của hệ phương trình trên là
Câu 5:
Hệ số \[a,b\] và \[c\] tương ứng của phương trình bậc nhất hai ẩn \[ - 7x - 12 = 0\] là:
Câu 6:
Cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình nào trong các hệ phương trình sau đây?
Câu 7:
I. Nhận biết
Điều kiện xác định của phương trình \[\frac{1}{x} - \frac{2}{3} = \frac{{5{x^2}}}{{x - 4}}\] là
về câu hỏi!