Câu hỏi:

12/10/2024 122

Cho các khẳng định sau với mọi \[x,y\] là số dương:

(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]

(II) \[{x^2} + {y^3} \le 0.\]

(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]

Có bao nhiêu khẳng định đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

⦁ Ta có: \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) - 4 = 1 + \frac{x}{y} + \frac{y}{x} + 1 - 4 = \frac{x}{y} + \frac{y}{x} - 2 = \frac{{{x^2} + {y^2} - 2xy}}{{xy}} = \frac{{{{\left( {x - y} \right)}^2}}}{{xy}}.\]

Với mọi \[x,y > 0\] ta có \[{\left( {x - y} \right)^2} \ge 0\] và \[xy > 0,\] nên \[\frac{{{{\left( {x - y} \right)}^2}}}{{xy}} \ge 0.\]

Do đó \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) - 4 \ge 0.\]

Vì vậy \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]

Suy ra (I) là đúng.

⦁ Vì \[x,y > 0\] nên \[{x^2} > 0\] và \[{y^3} > 0.\]

Do đó \[{x^2} + {y^3} > 0.\]

Suy ra (II) là sai.

⦁ \[\frac{1}{x} + \frac{1}{y} = \frac{{y + x}}{{xy}} > 0\] với mọi \[x,y > 0\].

Do đó (III) là đúng.

Như vậy có hai khẳng định đúng.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có: \[x\] là số không âm nên \[x \ge 0.\]

Do đó ta chọn phương án B.

Câu 2

Lời giải

Đáp án đúng là: B

Các cặp bất đẳng thức ở phương án A, C, D là các cặp bất đẳng thức ngược chiều.

Cặp bất đẳng thức ở phương án B là cặp bất đẳng thức cùng chiều.

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP