Câu hỏi:

13/10/2024 151

Trong không gian \(Oxyz\), cho \(I\left( {1;2;3} \right)\). Điểm đối xứng với \(A\) qua trục \(Oz\) có tọa độ là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Điểm đối xứng với \(A\) qua trục \(Oz\) có tọa độ là \(\left( {1;2; - 3} \right).\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ trục \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\) nằm trên tia \(Oy\), điểm \(A'\) nằm trên tia \(Oz\). Biết \(AB = 2,AD = 4,AA' = 3\). Gọi tọa độ \(C'\) là \(\left( {a;b;c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là

Xem đáp án » 13/10/2024 8,055

Câu 2:

Trong không gian với hệ trục \(Oxyz\), cho điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 3\overrightarrow i + 5\overrightarrow j - 7\overrightarrow k \). Tìm tọa độ của điểm đối xứng \(M'\) của \(M\) qua mặt phẳng \(\left( {Oxz} \right)\).

Xem đáp án » 13/10/2024 3,668

Câu 3:

Ở một sân bay, vị trí của máy bay được xác định bởi điểm \(M\) trong không gian \(Oxyz\) như hình bên. Gọi \(H\) là hình chiếu vuông góc của \(M\) xuống mặt phẳng \(\left( {Oxy} \right)\). Biết \(OM = 70,\left( {\overrightarrow i ,\overrightarrow {OH} } \right) = 64^\circ \), \(\left( {\overrightarrow {OH} ,\overrightarrow {OM} } \right) = 48^\circ \). Tìm tọa độ điểm \(M\).

Ở một sân bay, vị trí của máy bay được xác định bởi điểm  M  trong không gian  O x y z  như hình bên. Gọi  H  là hình chiếu vuông góc của  M  xuống mặt phẳng  ( O x y ) . Biết  O M = 70 (ảnh 1)

Xem đáp án » 13/10/2024 3,095

Câu 4:

Trong không gian với hệ trục \(Oxyz\), cho điểm \(M\left( {1;2;3} \right)\). Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \(\left( {Oxy} \right)\). Tọa độ của \(H'\) đối xứng với \(H\) qua mặt phẳng \(\left( {Oxz} \right)\) là

Xem đáp án » 13/10/2024 1,451

Câu 5:

Trong không gian \(Oxyz\), cho \(M\left( {8;4;3} \right)\). Khi đó:

a) Hình chiếu vuông góc của \(M\) trên trục \(Ox\) là điểm \(\left( {0;4;3} \right)\).

b) Hình chiếu vuông góc của \(M\) trên trục \(Oz\) là điểm \(\left( {0;0;3} \right)\).

c) Hình chiếu vuông góc của \(M\) trên trục \(Oxz\) là điểm \(\left( {8;0;3} \right)\).

d) \(\overrightarrow {OM} = 8\overrightarrow i + 4\overrightarrow j + 3\overrightarrow k .\)

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 13/10/2024 1,015

Câu 6:

II. Thông hiểu

Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) và các đỉnh có tọa độ lần lượt là \(A\left( {3;1;2} \right),B\left( {1;0;1} \right),C\left( {2;3;0} \right)\). Tọa độ đỉnh \(D\) là

Xem đáp án » 13/10/2024 884

Câu 7:

Trong không gian \(Oxyz\), cho \(A\left( {2; - 1;0} \right)\) và \(B\left( {1;1; - 3} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là

Xem đáp án » 13/10/2024 470
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua