Câu hỏi:
13/10/2024 150Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:
a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]
b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]
c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]
d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: Phương trình biểu diễn quãng đường của vật là \[s\left( t \right) = \int {v\left( t \right)} dt = \int {\left( {{t^2} - 2t + 1} \right)dt} \]
Suy ra \[s\left( t \right) = \frac{{{t^3}}}{3} - {t^2} + t.\]
a) Quãng đường vật đi được sau 2 giây là \[s\left( 2 \right) = \frac{{{2^3}}}{3} - {2^2} + 2 = \frac{2}{3}\] (m).
Do đó, ý a đúng.
b) Ta có phương trình gia tốc là \[a\left( t \right) = v'\left( t \right) = 2t - 2\].
Thời điểm gia tốc bị triệt tiêu là \[a\left( t \right) = 0\] hay \[t = 1.\]
Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[s\left( 1 \right) = \frac{{{1^3}}}{3} - {1^2} + 1 = \frac{1}{3}\] (m).
Do đó, ý b đúng.
c) Thời điểm vận tốc đạt 9 m/s là nghiệm dương của phương trình \[{t^2} - 2t + 1 = 9\].
Giải phương trình ta được \[t = 4\] và \[t = - 2\] (loại do \[t > 0\]).
Suy ra quãng đường vật đi được sau 4 giây là \[s\left( 4 \right) = \frac{{{4^3}}}{3} - {4^2} + 4 = \frac{{28}}{3}\] (m).
Có \[s\left( 2 \right) = \frac{2}{3}\] (m) nên Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm \[t = 4\] là \[s\left( 4 \right) - s\left( 2 \right) = \frac{{26}}{3}\].
Do đó, ý c đúng.
d) Thời điểm gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[a\left( t \right) = 2t - 2 = 10\] hay t = 6 giây.
Vậy quãng đường vật đi được sau 6 giây là \[s\left( 6 \right) = \frac{{{6^3}}}{3} - {6^2} + 6 = 42\] (m).
Vậy ý d sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = 2x + {e^x}\]. Tìm một nguyên hàm \[F\left( x \right)\] của hàm số \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2024.\]
Câu 2:
Cho hai hàm số \[f\left( x \right),g\left( x \right)\] là hàm số liên tục, có \[F\left( x \right),G\left( x \right)\] lần lượt là nguyên hàm của \[f\left( x \right),g\left( x \right)\]. Xét các mệnh đề sau:
(I). \[F\left( x \right) + G\left( x \right)\] là một nguyên hàm của \[f\left( x \right) + g\left( x \right).\]
(II). \[kF\left( x \right)\] là một nguyên hàm của \[kf\left( x \right)\] với \[k \ne 0.\]
(III). \[F\left( x \right).G\left( x \right)\] là một nguyên hàm của \[f\left( x \right).g\left( x \right)\].
Các mệnh đề đúng là
Câu 3:
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \[t\] giây (coi \[t = 0\] là thời điểm viên đạn được bắn lên trên), vận tốc của nó được cho bởi \[v\left( t \right) = 25 - 9,8t{\rm{ }}\left( {m/s} \right)\]. Độ cao của viên đạn (tính từ mặt đất lên) đạt giá trị lớn nhất là
Câu 4:
Một ô tô đang chạy với vận tốc 19 m/s thì hãm phanh và chuyển động chậm dần với tốc độ \[v\left( t \right) = 19 - 2t\] (m/s). Kể từ khi hãm phanh, quãng đường ô tô đi được sau 5 giây là bao nhiêu?
Câu 5:
Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{{x^2}}} - {x^2} - \frac{1}{3}\] là
Câu 6:
Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] với \[f\left( x \right) = \frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}\] biết \[F\left( 1 \right) = \frac{5}{2}\]. Tính \[F\left( 2 \right)\].
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!