Câu hỏi:
13/10/2024 630Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:
a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]
b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]
c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]
d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: Phương trình biểu diễn quãng đường của vật là \[s\left( t \right) = \int {v\left( t \right)} dt = \int {\left( {{t^2} - 2t + 1} \right)dt} \]
Suy ra \[s\left( t \right) = \frac{{{t^3}}}{3} - {t^2} + t.\]
a) Quãng đường vật đi được sau 2 giây là \[s\left( 2 \right) = \frac{{{2^3}}}{3} - {2^2} + 2 = \frac{2}{3}\] (m).
Do đó, ý a đúng.
b) Ta có phương trình gia tốc là \[a\left( t \right) = v'\left( t \right) = 2t - 2\].
Thời điểm gia tốc bị triệt tiêu là \[a\left( t \right) = 0\] hay \[t = 1.\]
Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[s\left( 1 \right) = \frac{{{1^3}}}{3} - {1^2} + 1 = \frac{1}{3}\] (m).
Do đó, ý b đúng.
c) Thời điểm vận tốc đạt 9 m/s là nghiệm dương của phương trình \[{t^2} - 2t + 1 = 9\].
Giải phương trình ta được \[t = 4\] và \[t = - 2\] (loại do \[t > 0\]).
Suy ra quãng đường vật đi được sau 4 giây là \[s\left( 4 \right) = \frac{{{4^3}}}{3} - {4^2} + 4 = \frac{{28}}{3}\] (m).
Có \[s\left( 2 \right) = \frac{2}{3}\] (m) nên Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm \[t = 4\] là \[s\left( 4 \right) - s\left( 2 \right) = \frac{{26}}{3}\].
Do đó, ý c đúng.
d) Thời điểm gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[a\left( t \right) = 2t - 2 = 10\] hay t = 6 giây.
Vậy quãng đường vật đi được sau 6 giây là \[s\left( 6 \right) = \frac{{{6^3}}}{3} - {6^2} + 6 = 42\] (m).
Vậy ý d sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có phương trình độ cao của viên đạn là:
\[h\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {25 - 9,8t} \right)} dt = 25t - 4,9{t^2} + C.\]
Do coi \[t = 0\] là thời điểm viên đạn được bắn lên trên nên C = 0.
Suy ra \[h\left( t \right) = 25t - 4,9{t^2} = - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}}\].
Nhận thấy \[ - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}} \le \frac{{3125}}{{98}}\] do đó, độ cao của viên đạn đạt giá trị lớn nhất bằng \[\frac{{3125}}{{98}}\] khi \[t = \frac{{125}}{{49}}\].
Lời giải
Đáp án đúng là: A
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx = \int {\left( {2x + {e^x}} \right)dx} } \]\[ = {x^2} + {e^x} + C.\]
Mà \[F\left( 0 \right) = 2024\] nên \[{0^2} + {e^0} + C = 2024\] hay C = 2023.
Vậy \[F\left( x \right) = {x^2} + {e^x} + 2023.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.