Câu hỏi:

13/10/2024 3,828

Một ô tô đang chạy với vận tốc 19 m/s thì hãm phanh và chuyển động chậm dần với tốc độ \[v\left( t \right) = 19 - 2t\] (m/s). Kể từ khi hãm phanh, quãng đường ô tô đi được sau 5 giây là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có phương trình biểu diễn quãng đường của ô tô là

\[s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {19 - 2t} \right)dt = 19t - {t^2} + C} \] (m).

Ta có: \[s\left( 0 \right) = 0\] nên C = 0.

Suy ra \[s\left( t \right) = 19t - {t^2}\].

Vậy sau 5 giây kể từ khi hãm phanh tức t = 5, quãng đường ô tô đi được là

\[s\left( 5 \right) = 19.5 - {5^2} = 70\]m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có phương trình độ cao của viên đạn là:

\[h\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {25 - 9,8t} \right)} dt = 25t - 4,9{t^2} + C.\]

Do coi \[t = 0\] là thời điểm viên đạn được bắn lên trên nên C = 0.

Suy ra \[h\left( t \right) = 25t - 4,9{t^2} = - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}}\].

Nhận thấy \[ - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}} \le \frac{{3125}}{{98}}\] do đó, độ cao của viên đạn đạt giá trị lớn nhất bằng \[\frac{{3125}}{{98}}\] khi \[t = \frac{{125}}{{49}}\].

Câu 2

Lời giải

Đáp án đúng là: A

Ta có: \[F\left( x \right) = \int {f\left( x \right)dx = \int {\left( {2x + {e^x}} \right)dx} } \]\[ = {x^2} + {e^x} + C.\]

Mà \[F\left( 0 \right) = 2024\] nên \[{0^2} + {e^0} + C = 2024\] hay C = 2023.

Vậy \[F\left( x \right) = {x^2} + {e^x} + 2023.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP