Câu hỏi:
13/10/2024 167
II. Thông hiểu
II. Thông hiểu
Trong hệ tọa độ \[Oxyz\], phương trình tham số của đường thẳng đi qua điểm \[A\left( {2;0; - 1} \right)\] và vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Do đường thẳng vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] nên vectơ chỉ phương của đường thẳng là \[\overrightarrow u = \overrightarrow {{n_P}} = \left( {2; - 1;1} \right)\].
Phương trình tham số của đường thẳng là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = - t\\z = - 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right).\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có vectơ chỉ phương của đường thẳng \[AB\] là \[\overrightarrow u = \overrightarrow {AB} = \left( {4;2; - 4} \right) = - 2\left( { - 2; - 1;2} \right)\].
Suy ra \[\overrightarrow u = \left( { - 2; - 1;2} \right)\] là một vectơ chỉ phương của đường thẳng.
Do đó, phương trình đường thẳng thỏa mãn là: \[\frac{{x - 3}}{{ - 2}} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{2}.\]
Lời giải
Đáp án đúng là: B
Tọa độ trọng tâm tam giác \[OAB\] là \[G\left( {0;2;2} \right)\].
Ta có: \[\overrightarrow {OA} = \left( {1;4;2} \right)\], \[\overrightarrow {OB} = \left( { - 1;2;4} \right)\];
\[{\overrightarrow n _P} = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\4&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&4\end{array}} \right|} \right)\]\[ = \left( {12; - 6;6} \right) = 6\left( {2; - 1;1} \right).\]
Do \[d\] vuông góc với \[\left( {OAB} \right)\] nên \[{\overrightarrow u _d} = {\overrightarrow n _P} = \left( {2; - 1;1} \right)\].
Phương trình đường thẳng \[d\] là: \[d:\frac{x}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 2}}{1}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.