Chọn mệnh đề đúng về hàm số \(y = \frac{{2x - 1}}{{x + 2}}\) .
A. Hàm số nghịch biến trên từng khoảng xác định của nó.
B. Hàm số đồng biến trên tập xác định của nó.
C. Hàm số đồng biến trên từng khoảng xác định của nó.
D. Hàm số nghịch biến trên tập xác định của nó.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Ta có: \(y' = \frac{5}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \ne - 2\). Nên hàm số đồng biến trên từng khoảng xác định của nó.
Bảng biến thiên:

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hàm số đồng biến trên khoảng \(\left( { - 1;\,3} \right)\).
B. Hàm số đồng biến trên khoảng \(\left( { - \infty ;\,2} \right)\).
C. Hàm số nghịch biến trên khoảng \(\left( { - 2;\,1} \right)\).
D. Hàm số nghịch biến trên khoảng \(\left( {1;\,2} \right)\).
Lời giải
Đáp án đúng là: D
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên khoảng \(\left( {1\,;\,2} \right)\).
Câu 2
A. Hàm số đã cho đồng biến trên khoảng \[\left( { - \infty ;0} \right)\].
B. Hàm số đã cho đồng biến trên khoảng \[\left( {2; + \infty } \right)\].
C. Hàm số đã cho đồng biến trên khoảng \[\left( {0;2} \right)\].
D. Hàm số đã cho đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].
Lời giải
Đáp án đúng là: C
Ta có \(y = - {x^3} + 3{x^2}\); \[y' = - 3{x^2} + 6x\];
\[y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\].
Bảng biến thiên:

Vậy hàm số đã cho đồng biến trên \[\left( {0;2} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hàm số đã cho đồng biến trên các khoảng \(\left( { - 2; + \infty } \right)\) và \(\left( { - \infty ; - 2} \right).\)
B. Hàm số đã cho đồng biến trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1;2} \right).\)
C. Hàm số đã cho đồng biến trên khoảng \(\left( {0;2} \right).\)
D. Hàm số đã cho đồng biến trên \(\left( { - 2;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[(0; + \infty ).\]
B. \[( - \infty ; - 2).\]
C. \[( - 3;1).\]
D. \[( - 2;0).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hàm số y = f(x) có hai điểm cực trị là 0 và 2.
B. Giá trị b bằng 0.
C. Giá trị c = −2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Đồ thị hàm số \(y = f(x)\) cắt trục hoành tại ba điểm phân biệt.
B. Đồ thị hàm số \(y = f(x)\) có hai điểm cực trị.
C. Đồ thị hàm số \(y = f(x)\) có ba điểm cực trị.
D. Đồ thị hàm số \(y = f(x)\) có một điểm có một điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





