Câu hỏi:

14/10/2024 170 Lưu

Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

A. Đồ thị hàm số có hai đường tiệm cận.

B. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 2 \right\}\).

C. Hàm số có một cực trị.

D. Giao điểm của đồ thị và trục tung là \(\left( { - 1\,;\,0} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

\(\mathop {\lim }\limits_{x \to \pm \infty } y = 1\) nên \(y = 1\) là tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty ,\,\,\,\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty \) nên \(x = 2\) là tiệm cận đứng.

Do đó đồ thị hàm số có hai đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy đường tiệm cận xiên đi qua gốc tọa đô và điểm (2; 2) nên đường tiệm cận xiên có phương trình là y = x.

Lời giải

Đáp án đúng là: B

Vì \(\mathop {\lim }\limits_{x \to - \infty } y = 3\) nên \(y = 3\) là đường tiệm cận ngang.

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \)nên \(x = 1\) là đường tiệm cận đứng.

Vậy hàm số đã cho có hai đường tiệm cận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = 0.\)

B. \(x = - 4.\)

C. \(x = 0\); \(x = 4.\)

D. \(x = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP