Câu hỏi:

16/10/2024 527

Cho khối lập phương \(ABCD.A'B'C'D'\). Khi đó, góc giữa vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {AD} \) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho khối lập phương  A B C D . A ′ B ′ C ′ D ′ . Khi đó, góc giữa vectơ  −−→ A B  và vectơ  −−→ A D  là (ảnh 1)

Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 90^\circ .\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm của \(BC\).

Tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right)\).

Xem đáp án » 16/10/2024 18,446

Câu 2:

Cho hình lập phương \(ABCD.A'B'C'D'\). Khẳng định nào sau đây là sai?

Xem đáp án » 16/10/2024 3,578

Câu 3:

I. Nhận biết

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).

Cho hình hộp chữ nhật  A B C D . A ′ B ′ C ′ D ′ .    Vectơ nào sau đây cùng phương với  −−→ B C  ? (ảnh 1)

Vectơ nào sau đây cùng phương với \(\overrightarrow {BC} \) ?

Xem đáp án » 16/10/2024 1,951

Câu 4:

Trong không gian, cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Trong các mệnh đề dưới đây, có bao nhiêu mệnh đề sai?

a) \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {B'D} .\)

b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD} .\)

c) \(\left| {\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} } \right| = a\sqrt 2 .\)

d) \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = a.\)

Xem đáp án » 16/10/2024 1,655

Câu 5:

Cho hình lăng trụ \(ABC.A'B'C'\) đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\) Gọi \(G'\) là trọng tâm của tam giác \(A'B'C'\). Vectơ \(\overrightarrow {AG'} \) bằng

Xem đáp án » 16/10/2024 1,434

Câu 6:

Cho tứ diện \(ABCD\) có \(AB = AC = AD\) và \(\widehat {BAC} = \widehat {BAD} = 60^\circ \), \(\widehat {CAD} = 90^\circ \). Gọi \(I\) và \(J\) lần lượt là trung điểm của \(AB\) và \(CD\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {IJ} \) ?

Xem đáp án » 16/10/2024 1,383

Câu 7:

Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4\); \(\left| {\overrightarrow b } \right| = 3\); \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Chọn khẳng định đúng ?

Xem đáp án » 16/10/2024 1,202
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay