Câu hỏi:
16/10/2024 855III. Vận dụng
Một vật chuyển động với gia tốc \[a\left( t \right) = 3{t^2} + t{\rm{ }}\left( {m/{s^2}} \right)\]. Biết rằng vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right).\] Vận tốc của vật đó sau hai giây là.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Phương trình vận tốc của vật là \[v\left( t \right) = \int {a\left( t \right)} dt = \int {\left( {3{t^2} + t} \right)dt} = {t^3}{\rm{ + }}\frac{{{t^2}}}{2}{\rm{ + C}}{\rm{. }}\]
Mà vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right)\] hay \[v\left( 0 \right) = 2{\rm{ }}\left( {m/s} \right)\].
Do đó, ta có C = 2.
Suy ra \[v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2.\]
Vậy vận tốc của vật đó sau 2 giây là: \[v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12{\rm{ }}\left( {m/s} \right)\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:
a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]
b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]
c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]
d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Câu 2:
Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] với \[f\left( x \right) = \frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}\] biết \[F\left( 1 \right) = \frac{5}{2}\]. Tính \[F\left( 2 \right)\].
Câu 3:
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \[t\] giây (coi \[t = 0\] là thời điểm viên đạn được bắn lên trên), vận tốc của nó được cho bởi \[v\left( t \right) = 25 - 9,8t{\rm{ }}\left( {m/s} \right)\]. Độ cao của viên đạn (tính từ mặt đất lên) đạt giá trị lớn nhất là
Câu 4:
Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{{x^2}}} - {x^2} - \frac{1}{3}\] là
Câu 5:
Một ô tô đang chạy với vận tốc 19 m/s thì hãm phanh và chuyển động chậm dần với tốc độ \[v\left( t \right) = 19 - 2t\] (m/s). Kể từ khi hãm phanh, quãng đường ô tô đi được sau 5 giây là bao nhiêu?
Câu 6:
Cho các mệnh đề dưới đây:
(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số
\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]
Số mệnh đề đúng trong các mệnh đề trên là
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!