Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề sai.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \[f'\left( x \right) = \left( {2x + 1} \right){\left[ {f\left( x \right)} \right]^2},\forall x \in \mathbb{R}\] \[ \Rightarrow \frac{{ - f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = - \left( {2x + 1} \right),\forall x \in \mathbb{R}\].
\[ \Rightarrow {\left( {\frac{1}{{f\left( x \right)}}} \right)^\prime } = - \left( {2x + 1} \right),\forall x \in \mathbb{R}\]
Vậy \[\frac{1}{{f\left( x \right)}} = - \int {\left( {2x + 1} \right)dx} = - {x^2} - x + C\]
Suy ra \[f\left( x \right) = \frac{1}{{ - {x^2} - x + C}}\].
Mà \[f\left( 0 \right) = - 1 \Leftrightarrow C = - 1.\]
Vậy \[f\left( x \right) = - \frac{1}{{{x^2} + x + 1}}\].
Ta có: \[\int\limits_0^1 {\left( {{x^3} - 1} \right)f\left( x \right)dx} = \int\limits_0^1 {\left[ { - \frac{{\left( {{x^3} - 1} \right)}}{{{x^2} + x + 1}}} \right]dx} = \int\limits_0^1 {\left( {1 - x} \right)dx} = \frac{1}{2}.\]
Lời giải
Đáp án đúng là: A
Ta có: \[I = \frac{1}{2}\left[ {\int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\int\limits_1^2 {\left( {{x^2} - 2x + 3} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 1} \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 3x} \right)} \right|_1^2 + \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_2^3} \right] = \frac{{23}}{6}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.