Câu hỏi:

16/10/2024 109 Lưu

Trong không gian \[Oxyz\], mặt phẳng \[\left( P \right):x + y + z - 3 = 0\] đi qua điểm nào dưới đây?

A. \[A\left( { - 1; - 1; - 1} \right).\]

B. \[B\left( {1;1;1} \right).\]

C. \[C\left( {1;1; - 1} \right).\]

D. \[D\left( { - 3;0;0} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Thay tọa độ vào phương trình mặt phẳng, ta có:

Với điểm \[A\left( { - 1; - 1; - 1} \right),\] ta được: \[ - 1 + \left( { - 1} \right) + \left( { - 1} \right) - 3 = - 6 \ne 0.\]

Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[A\left( { - 1; - 1; - 1} \right).\]

Với điểm \[B\left( {1;1;1} \right)\], ta được: \[1 + 1 + 1 - 3 = 0\].

Do đó, mặt phẳng \[\left( P \right)\] đi qua điểm \[B\left( {1;1;1} \right).\]

Với điểm \[C\left( {1;1; - 1} \right),\] ta được: \[1 + 1 + \left( { - 1} \right) - 3 = - 2 \ne 0.\]

Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[C\left( {1;1; - 1} \right).\]

Với điểm \[D\left( { - 3;0;0} \right)\], ta được: \[ - 3 + 0 + 0 - 3 = - 6 \ne 0.\]

Do đó, mặt phẳng \[\left( P \right)\] không đi qua điểm \[D\left( { - 3;0;0} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Gọi \[M\left( {a;b;c} \right)\] với \[a \in \mathbb{Z},b \in \mathbb{R},c \in \mathbb{R}.\]

Ta có: \[\overrightarrow {AM} = \left( {a - 3;b - 1;c - 7} \right)\] và \[\overrightarrow {BM} = \left( {a - 5;b - 5;c - 1} \right)\].

Vì \[\left\{ \begin{array}{l}M \in \left( P \right)\\MA = MB = \sqrt {35} \end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}M \in \left( P \right)\\M{A^2} = M{B^2}\\M{A^2} = 35\end{array} \right.\] nên ta có hệ phương trình sau:

\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = {\left( {a - 5} \right)^2} + {\left( {b - 5} \right)^2} + {\left( {c - 1} \right)^2}\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]

\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\4a - 8b - 12c = - 8\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]

\[\left\{ \begin{array}{l}b = c\\c = a + 2\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]

\[\left\{ \begin{array}{l}b = a + 2\\c = a + 2\\3{a^2} - 14a = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\] (do \[a \in \mathbb{Z}\]).

Ta có \[M\left( {0;2;2} \right)\] nên suy ra \[OM = 2\sqrt 2 .\]

Lời giải

Đáp án đúng là: A

Ta có: \[2\left( {x - 1} \right) + 3\left( {y - 1} \right) + \left( { - 1} \right)\left( {z - 3} \right) = 0\] hay \[2x + 3y - z - 2 = 0.\]

Câu 3

A. \[\left( P \right):x + y + 2z - 3 = 0.\]

B. \[\left( P \right):x + y + 2z - 6 = 0.\]

C. \[\left( P \right):x + 3y + 4z - 7 = 0.\]

D. \[\left( P \right):x + 3y + 4z - 26 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow {AC} .\]

B. \[\overrightarrow {AC'} .\]

C. \[\overrightarrow {AA'} .\]

D. \[\overrightarrow {AD'} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\overrightarrow n = \left( {2;1;2} \right).\]

B. \[\overrightarrow n = \left( {2; - 1; - 2} \right).\]

C. \[\overrightarrow n = \left( {2;1; - 2} \right).\]

D. \[\overrightarrow n = \left( { - 2;1; - 2} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{x^2} + 2y + z - 3 = 0.\]

B. \[{x^2} + {y^2} + {z^2} - 2 = 0.\]

C. \[{x^2} + 2{y^2} + z - 5 = 0.\]

D. \[x + 2y + z - 4 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP