Câu hỏi:
16/10/2024 114Cho hai mặt phẳng \[\left( P \right):2x - y + 2z - 5 = 0\]; \[\left( Q \right):4x - 2y + 4z + 1 - m = 0\] và điểm \[M\left( {2;1;5} \right)\]. Khi đó:
a) Khoảng cách từ \[M\] đến mặt phẳng \[\left( P \right)\] bằng \[\frac{8}{3}.\]
b) Với \[m = 0\] thì khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng \[\frac{9}{2}.\]
c) Với \[m = 3\] thì khoảng cách giữa mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng \[3.\]
d) Có hai giá trị của \[m\] để khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng 1. Khi đó tổng của tất cả các giá trị \[m\] bằng 5.
Số mệnh đề đúng trong các mệnh đề trên là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
a) Ta có: \[d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.2 - 1 + 2.5 - 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{8}{3}.\]
Vậy ý a đúng.
b) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]
Với \[m = 0\] thì \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {27 - 0} \right|}}{6} = \frac{9}{2}.\]
Vậy ý b đúng.
c) Với \[m = 3\] thì \[\left( Q \right):4x - 2y + 4z - 2 = 0\].
Nhận thấy \[\frac{2}{4} = \frac{{ - 1}}{{ - 2}} = \frac{2}{4} \ne \frac{{ - 5}}{{ - 2}}\] do đó \[\left( P \right)\parallel \left( Q \right)\].
Có \[\left( Q \right):4x - 2y + 4z - 2 = 0\]\[ \Leftrightarrow 2x - y + 2z - 1 = 0\]
Suy ra \[d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 5 - \left( { - 1} \right)} \right|}}{3} = 2.\]
Vậy ý c sai.
d) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]
Để \[d\left( {M,\left( Q \right)} \right) = 1\] thì \[\frac{{\left| {27 - m} \right|}}{6} = 1\].
\[\left| {27 - m} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}m = 21\\m = 33\end{array} \right.\].
Vậy có 2 giá trị \[m\] để khoảng cách từ \[M\] đến \[\left( Q \right)\] bằng 1. Và tổng của hai giá trị là 54.
Vậy ý d sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Câu 2:
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Câu 3:
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y + 2z - 4 = 0\]. Gọi \[H\] là hình chiếu vuông góc của \[M\left( {3;1; - 2} \right)\] lên mặt phẳng \[\left( P \right)\]. Độ dài đoạn thẳng \[MH\] là
Câu 4:
Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {3;1;7} \right);B\left( {5;5;1} \right)\] và mặt phẳng \[\left( P \right):2x - y - z + 4 = 0\]. Điểm \[M\] thuộc \[\left( P \right)\] sao cho \[MA = MB = \sqrt {35} \]. Biết \[M\] có hoành độ nguyên, tính \[OM\].
Câu 5:
Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
Câu 6:
Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!