Câu hỏi:
16/10/2024 70Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]
\[{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 9.\]
Vậy tâm của mặt cầu là \[I\left( {1; - 1;1} \right)\] và bán kính \[R = 3.\]
Để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] thì \[d\left( {I,\left( P \right)} \right) = 3\].
Suy ra \[d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 + 2.\left( { - 1} \right) + 1 - {m^2} + 4m - 5} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{{\left| { - {m^2} + 4m - 4} \right|}}{3} = 3\].
Hay \[\left| { - {m^2} + 4m - 4} \right| = 9\] \[ \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 4 = 9\\ - {m^2} + 4m - 4 = - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 13 = 0\\ - {m^2} + 4m + 5 = 0\end{array} \right.\]
Giải phương trình, ta có nghiệm \[m = - 1\] hoặc \[m = 5.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]
Câu 2:
Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là
Câu 3:
II. Thông hiểu
Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\] và một điểm \[M\left( {4;2; - 2} \right)\]. Mệnh đề nào sau đây là đúng?
Câu 4:
Phương trình mặt cầu tâm \[I\left( {1; - 2;3} \right)\] bán kính \[R = 3\] là
Câu 5:
III. Vận dụng
Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là
Câu 6:
Xác định tâm và bán kính mặt cầu \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\] ta được
về câu hỏi!