Câu hỏi:

16/10/2024 70

Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]

\[{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 9.\]

Vậy tâm của mặt cầu là \[I\left( {1; - 1;1} \right)\] và bán kính \[R = 3.\]

Để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] thì \[d\left( {I,\left( P \right)} \right) = 3\].

Suy ra \[d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 + 2.\left( { - 1} \right) + 1 - {m^2} + 4m - 5} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{{\left| { - {m^2} + 4m - 4} \right|}}{3} = 3\].

Hay \[\left| { - {m^2} + 4m - 4} \right| = 9\] \[ \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 4 = 9\\ - {m^2} + 4m - 4 = - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 13 = 0\\ - {m^2} + 4m + 5 = 0\end{array} \right.\]

Giải phương trình, ta có nghiệm \[m = - 1\] hoặc \[m = 5.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]

Xem đáp án » 16/10/2024 181

Câu 2:

Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là

Xem đáp án » 16/10/2024 59

Câu 3:

II. Thông hiểu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\] và một điểm \[M\left( {4;2; - 2} \right)\]. Mệnh đề nào sau đây là đúng?

Xem đáp án » 16/10/2024 52

Câu 4:

Phương trình mặt cầu tâm \[I\left( {1; - 2;3} \right)\] bán kính \[R = 3\] là

Xem đáp án » 16/10/2024 52

Câu 5:

III. Vận dụng

Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là

Xem đáp án » 16/10/2024 47

Câu 6:

Xác định tâm và bán kính mặt cầu \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\] ta được

Xem đáp án » 16/10/2024 46

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store