Câu hỏi:

16/10/2024 1,032

Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Trong không gian  O x y z , cho mặt cầu  ( S ) : ( x − 1 )^2 + ( y − 2 )^2 + ( z − 3 )^2 = 25  và hình nón  ( H )  có đỉnh  A ( 3 ; 2 ; − 2 )  và nhận  A I  là trục đối xứng với  I  là tâm mặt cầu. Một đường sinh hình nón  ( H )  cắt mặt cầu tại  M , N sao cho  A M = 3 A N . Viết phương trình mặt cầu đồng tâm với mặt cầu  ( S ) , tiếp xúc với các đường sinh của hình nón  ( H ) . (ảnh 1)

Gọi hình chiếu vuông góc của

\[I\] trên \[MN\] là \[K\].

Dễ thấy \[AN = NK = \frac{1}{3}AM\], mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;2;3} \right)\] và bán kính \[R = 5.\]

Có \[AM.AN = A{I^2} - {R^2} = 4\]\[ \Rightarrow A{N^2} = \frac{4}{3}\]

\[ \Rightarrow AN = NK = \frac{{2\sqrt 3 }}{3}\]\[ \Rightarrow IK = \sqrt {I{N^2} - K{N^2}} = \frac{{\sqrt {213} }}{3}.\]

Nhận thấy mặt cầu đồng tâm với mặt cầu \[\left( S \right)\] và tiếp xúc với các đường sinh của hình nón \[\left( H \right)\] chính là mặt cầu tâm \[I\left( {1;2;3} \right)\], bán kính \[IK = \frac{{\sqrt {213} }}{3}.\]

Vậy phương trình mặt cầu cần tìm là: \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là

Xem đáp án » 16/10/2024 216

Câu 2:

III. Vận dụng

Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là

Xem đáp án » 16/10/2024 156

Câu 3:

Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là

Xem đáp án » 16/10/2024 138

Câu 4:

Trong các phương trình sau, phương trình nào là phương trình mặt cầu?

Xem đáp án » 16/10/2024 128

Câu 5:

Xác định tâm và bán kính mặt cầu \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\] ta được

Xem đáp án » 16/10/2024 117

Câu 6:

Phương trình mặt cầu tâm \[I\left( {1; - 2;3} \right)\] bán kính \[R = 3\] là

Xem đáp án » 16/10/2024 108

Bình luận


Bình luận