Câu hỏi:
17/10/2024 140Với hai số \(a < 0,\,\,b > 0\), biểu thức \[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \] có giá trị là</>
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Với hai số \(a < 0,\,\,b > 0\), ta có:</>
\[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {9{a^2}} }}{{\sqrt {{b^6}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {{{\left( {3a} \right)}^2}} }}{{\sqrt {{{\left( {{b^3}} \right)}^2}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\left| {3a} \right|}}{{\left| {{b^3}} \right|}}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{ - 3a}}{{{b^3}}}\]\( = {a^2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
II. Thông hiểu
Rút gọn biểu thức \(A = \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - \sqrt 2 \) ta được
Câu 2:
Giá trị của biểu thức \(\left( {\sqrt {\frac{2}{3}} + \sqrt {\frac{{50}}{3}} - \sqrt {24} } \right) \cdot \sqrt 6 \) là
Câu 4:
III. Vận dụng
Cho biểu thức \(A = \sqrt {20 + \sqrt {20 + \sqrt {20 + ...} } } \)(có vô hạn số \(\sqrt {20} ).\) Giá trị của biểu thức \(A\) là
Câu 5:
I. Nhận biết
Với hai số thực \(a,\,\,b\) không âm thì \[\sqrt {a \cdot b} \] bằng
Câu 6:
Cho ba số \(a \ge 0\) và \(b > 0,\,\,c > 0\). Khẳng định nào sau đây là đúng?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!