Với hai số \(a < 0,\,\,b > 0\), biểu thức \[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \] có giá trị là</>
A. \( - {a^2}\).
B. \({a^2}\).
C. \({a^2}{b^2}\).
D. \( - {a^2}{b^2}\).
Quảng cáo
Trả lời:

Đáp án đúng là: B
Với hai số \(a < 0,\,\,b > 0\), ta có:</>
\[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {9{a^2}} }}{{\sqrt {{b^6}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {{{\left( {3a} \right)}^2}} }}{{\sqrt {{{\left( {{b^3}} \right)}^2}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\left| {3a} \right|}}{{\left| {{b^3}} \right|}}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{ - 3a}}{{{b^3}}}\]\( = {a^2}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(1\).
B. \(\sqrt 2 \).
C. \( - 1\).
D. \( - 2\sqrt 2 \).
Lời giải
Đáp án đúng là: C
Ta có: \(A = \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - \sqrt 2 = \left| {1 - \sqrt 2 } \right| - \sqrt 2 = \sqrt 2 - 1 - \sqrt 2 = - 1.\)
Câu 2
A. \(\sqrt {{a^2}} = a\).
B. \(\sqrt {{a^2}} = - a\).
C. \(\sqrt {{a^2}} = \left| a \right|\).
D. \(\sqrt {{a^2}} = - \left| a \right|\).
Lời giải
Đáp án đúng là: A
Với \(a \ge 0,\) ta có: \(\sqrt {{a^2}} = \left| a \right| = a.\)
Câu 3
A. –1.
B. 0.
C. 1.
D. 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \( - 5\).
B. \( - 4\).
C. \(4\).
D. 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(ab\).
B. \(\sqrt a \cdot b\).
C. \(\sqrt a \cdot \sqrt b \).
D. \[a\sqrt b \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\sqrt {{a^2}b} = a\sqrt b \).
B. \(\sqrt {{a^2}b} = - a\sqrt b \).
C. \(\sqrt {{a^2}b} = b\sqrt a \).
D. \(\sqrt {{a^2}b} = - b\sqrt a \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.