Câu hỏi:

17/10/2024 300

Với hai số \(a < 0,\,\,b > 0\), biểu thức \[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \] có giá trị là</>

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Với hai số \(a < 0,\,\,b > 0\), ta có:</>

\[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {9{a^2}} }}{{\sqrt {{b^6}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\sqrt {{{\left( {3a} \right)}^2}} }}{{\sqrt {{{\left( {{b^3}} \right)}^2}} }}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{\left| {3a} \right|}}{{\left| {{b^3}} \right|}}\]\[ = - \frac{1}{3}a{b^3} \cdot \frac{{ - 3a}}{{{b^3}}}\]\( = {a^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có: \(A = \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - \sqrt 2 = \left| {1 - \sqrt 2 } \right| - \sqrt 2 = \sqrt 2 - 1 - \sqrt 2 = - 1.\)

Câu 2

Lời giải

Đáp án đúng là: A

Với \(a \ge 0,\) ta có: \(\sqrt {{a^2}} = \left| a \right| = a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP