Câu hỏi:
17/10/2024 35III. Vận dụng
Cho biểu thức \(A = \sqrt {20 + \sqrt {20 + \sqrt {20 + ...} } } \)(có vô hạn số \(\sqrt {20} ).\) Giá trị của biểu thức \(A\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(A = \sqrt {20 + \sqrt {20 + \sqrt {20 + ...} } } > 0\) nên:
\({A^2} = {\left( {\sqrt {20 + \sqrt {20 + \sqrt {20 + ...} } } } \right)^2} = 20 + \sqrt {20 + \sqrt {20 + ...} } = 20 + A\)
Suy ra \({A^2} - A - 20 = 0\)
\({A^2} - 5A + 4A - 20 = 0\)
\(A\left( {A - 5} \right) + 4\left( {A - 5} \right) = 0\)
\(\left( {A - 5} \right)\left( {A + 4} \right) = 0\)
\(A - 5 = 0\) (vì \(A > 0\) nên \(A + 4 > 0)\)
\(A = 5.\)
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
II. Thông hiểu
Rút gọn biểu thức \(A = \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - \sqrt 2 \) ta được
Câu 2:
Giá trị của biểu thức \(\left( {\sqrt {\frac{2}{3}} + \sqrt {\frac{{50}}{3}} - \sqrt {24} } \right) \cdot \sqrt 6 \) là
Câu 3:
Cho ba số \(a \ge 0\) và \(b > 0,\,\,c > 0\). Khẳng định nào sau đây là đúng?
Câu 5:
Trong Vật lí, ta có định luật Joule – Lenz để tính nhiệt lượng toả ra ở dây dẫn khi có dòng điện chạy qua:
\[Q = {I^2}Rt\].
Trong đó: \[Q\] là nhiệt lượng toả ra trên dây dẫn tính theo Jun (J);
\[I\] là cường độ dòng điện chạy trong dây dẫn tính theo Ampe (A);
\[R\] là điện trở dây dẫn tính theo Ohm (Ω);
\[t\] là thời gian dòng điện chạy qua dây dẫn tính theo giây.
Một bếp điện khi hoạt động bình thường có điện trở \[R = 80\,\,\Omega .\] Biết nhiệt lượng mà dây dẫn toả ra trong 1 giây là 500 J. Cường độ dòng điện chạy trong dây dẫn là
Câu 6:
Biết \(\sqrt {ab} = \sqrt { - a} \cdot \sqrt { - b} \) với hai số \(a \ne 0,\,\,b \ne 0\) và cho các khẳng định sau:
(i) Số \(a\) là số âm.
(ii) Số \(a\) và \(b\) có cùng dấu.
(iii) Số \(a\) và \(b\) là hai số được biểu diễn trên trục số bởi các điểm nằm bên trái số 0.
Có bao nhiêu khẳng định sai?
về câu hỏi!