Câu hỏi:

21/10/2024 1,040 Lưu

III. Vận dụng

Một tam giác có độ dài các cạnh là 2, 2, \(x\), trong đó \(x\) là số nguyên. Số giá trị của \(x\) thoả mãn bài toán là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Áp dụng định lý về các cạnh trong tam giác:

\(2 - 2 < x < 2 + 2\)

\(0 < x < 4\).

Mà \(x\) là số nguyên nên \(x \in \left\{ {1\,;\,\,2\,;\,\,3} \right\}\).

Vậy có 3 giá trị \(x\) thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Gọi \[x\] là số câu trả lời đúng. Điều kiện: \(x \in \mathbb{N}*,\,\,x \le 12\).

Suy ra \(12 - x\) là số câu trả lời sai.

Số điểm được cộng là \[5x\], số điểm bị trừ là \(2\left( {12 - x} \right)\).

Vì muốn vào vòng thi tiếp theo mỗi thí sinh cần có ít nhất 50 điểm, ban đầu mỗi thí sinh có sẵn 20 điểm nên ta có:

\(5x - 2\left( {12 - x} \right) + 20 \ge 50\)

\(5x - 24 + 2x + 20 \ge 50\)

\(7x - 4 \ge 50\)

\(7x - 4 + 4 \ge 50 + 4\)

\(7x \ge 54\)

\(\frac{{7x}}{7} \ge \frac{{54}}{7}\)

\(x \ge \frac{{54}}{7} \approx 7,7\).

Vậy muốn vào vòng thi tiếp theo, thí sinh cần trả lời đúng ít nhất 8 câu.

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \(\left( {{x^2} + 1} \right)\left( {x - 6} \right) \le {\left( {x - 2} \right)^3}\)

\({x^3} - 6{x^2} + x - 6 \le {x^3} - 6{x^2} + 12x - 8\)

\({x^3} - 6{x^2} + x - 6 - {x^3} + 6{x^2} - 12x + 8 \le 0\)

\(\left( {{x^3} - {x^3}} \right) + \left( {6{x^2} - 6{x^2}} \right) + \left( {x - 12x} \right) + \left( {8 - 6} \right) \le 0\)

\( - 11x + 2 \le 0\)

\( - 11x \le - 2\)

\(x \ge \frac{2}{{11}}\).

Vậy bất phương trình có nghiệm là \(x \ge \frac{2}{{11}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP