Câu hỏi:
21/10/2024 151II. Thông hiểu
Cho tam giác \[ABC\] vuông tại \[A\] có \[AC = 20{\rm{\;cm}},\,\,\widehat {C\,} = 60^\circ .\] Độ dài cạnh \[BC\] bằng
Quảng cáo
Trả lời:
Đáp án đúng là: A
![Cho tam giác \[ABC\] vuông tại \[A\] có \[AC = 20{\rm{\;cm}},\,\,\widehat {C\,} = 60^\circ .\] Độ dài cạnh \[BC\] bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid0-1729481262.png)
Vì tam giác \[ABC\] vuông tại \[A\] nên \[AC = BC.\cos C.\]
Suy ra \[BC = \frac{{AC}}{{\cos C}} = \frac{{20}}{{\cos 60^\circ }} = 40\] (cm).
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D

Theo đề, ta có \[\widehat {BAC} = 23^\circ \] và \[BC = 2\,\,500\] (m).
Vì tam giác \[ABC\] vuông tại \[B\] nên \[\sin \widehat {BAC} = \frac{{BC}}{{AC}}.\]
Suy ra \[AC = \frac{{BC}}{{\sin \widehat {BAC}}}\] hay \[x = \frac{{2\,\,500}}{{\sin 23^\circ }} \approx 6\,\,398\] (m).
Do đó muốn đạt độ cao \[2500\] m thì máy bay phải bay một đoạn đường \[x\] dài \[6\,\,398\] mét.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: A
Ta có dòng nước đã đẩy con đò đi lệch một góc \[\widehat {BAC}\] so với dự định ban đầu.
Theo đề, ta có \[BA = 130\] (m) và \[AC = 150\] (m).
Vì tam giác \[ABC\] vuông tại \[B\] nên \[\cos \widehat {BAC} = \frac{{BA}}{{AC}} = \frac{{130}}{{150}} = \frac{{13}}{{15}}.\]
Suy ra \[\widehat {BAC} \approx 30^\circ .\]
Do đó dòng nước đã đẩy con đò đi lệch một góc \[30^\circ \] so với phương dự định ban đầu.
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.