Câu hỏi:

21/10/2024 47

Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 5{\rm{\;cm}},\,\,\cos B = \frac{5}{8}.\] Kết quả nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho tam giác  A B C  vuông tại  A  có  A B = 5 c m , cos B = 5/8 .  Kết quả nào sau đây là đúng? (ảnh 1)

Xét tam giác \[ABC\] vuông tại \[A\], có:

⦁ \[\cos B = \frac{{AB}}{{BC}}.\] Suy ra \[BC = \frac{{AB}}{{\cos B}} = \frac{5}{{\frac{5}{8}}} = 8\] (cm);

⦁ \[B{C^2} = A{B^2} + A{C^2}\] (theo định lí Pythagore)

Suy ra \[A{C^2} = B{C^2} - A{B^2} = {8^2} - {5^2} = 39.\] Do đó \[AC = \sqrt {39} \] (cm).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác \[ABC\] vuông tại \[A\] ở hình bên mô tả cột cờ \[AB\] và bóng nắng của cột cờ trên mặt đất \[AC.\]

Tam giác  A B C  vuông tại  A  ở hình bên mô tả cột cờ  A B  và bóng nắng của cột cờ trên mặt đất  A C .  Người ta đo được độ dài  A C = 12 m  và  ˆ C = 40 ∘ .  Chiều cao  A B  của cột cờ khi làm tròn đến hàng phần trăm là (ảnh 1)

Người ta đo được độ dài \[AC = 12{\rm{\;m}}\] và \[\widehat C = 40^\circ .\] Chiều cao \[AB\] của cột cờ khi làm tròn đến hàng phần trăm là

Xem đáp án » 21/10/2024 324

Câu 2:

Cho hình vẽ dưới đây.

Cho hình vẽ dưới đây.Hệ thức nào sau đây là đúng? (ảnh 1)

Hệ thức nào sau đây là đúng?

Xem đáp án » 21/10/2024 285

Câu 3:

Một cây tre cao 9 m bị gió bão làm gãy ngang thân, tạo thành một góc \(32^\circ \).

Một cây tre cao 9 m bị gió bão làm gãy ngang thân, tạo thành một góc  32 ∘ .  Hỏi điểm gãy  A  cách gốc  B  bao nhiêu mét? (ảnh 1)

Hỏi điểm gãy \[A\] cách gốc \[B\] bao nhiêu mét?

Xem đáp án » 21/10/2024 228

Câu 4:

Sử dụng máy tính cầm tay, tính giá trị của biểu thức \[M = \sin 35^\circ 12' + \cot 20^\circ 25'\] rồi làm tròn kết quả đến hàng phần trăm ta được

Xem đáp án » 21/10/2024 104

Câu 5:

Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển \[C\] trên bãi cát (hình vẽ), người ta chọn một điểm \[B\] trên bãi biển cách điểm \[C\] một khoảng \[1{\rm{\;\;}}225\] m và dùng giác kế ngắm xác định được \[\widehat {ABC} = 75^\circ ;\,\,\widehat {ACB} = 65^\circ .\]

Để xác định khoảng cách từ một gốc cây  A  trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển  C  trên bãi cát (hình vẽ), người ta chọn một điểm  B  trên bãi biển cách điểm  C  một khoảng  1 225  m và dùng giác kế ngắm xác định được  ˆ A B C = 75 ∘ ; ˆ A C B = 65 ∘ . (ảnh 1)

Khi đó khoảng cách \[AC\] khoảng bao nhiêu mét?

Xem đáp án » 21/10/2024 103

Câu 6:

I. Nhận biết

Cho tam giác \[DEF\] vuông tại \[E\] có góc nhọn \[F\] bằng \[\alpha .\] Khi đó \[\sin \alpha \] bằng

Xem đáp án » 21/10/2024 96

Câu 7:

Cho \[\alpha \] là góc nhọn thỏa mãn \[\tan \alpha = \frac{1}{6}.\] Khi đó \[\cot \alpha \] bằng

Xem đáp án » 21/10/2024 94

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store