Câu hỏi:
21/10/2024 4,291Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi A là biến cố: “Học sinh đã học bài”.
\(\overline A \) là biến cố: “Học sinh chưa học bài”.
B là biến cố: “Học sinh đạt điểm cao”.
Theo đề, ta có:
Xác suất học sinh đã học bài là: P(A) = 0,8.
Xác suất học sinh chưa học bài là: P(\(\overline A \)) = 1 – 0,8 = 0,2.
Xác suất học sinh đạt điểm cao nếu đã học bài là: P(B | A) = 0,9.
Xác suất học sinh đạt điểm cao nếu chưa học bài là: P(B | \(\overline A \)) = 0,2.
Xác suất học sinh làm bài được điểm cao là:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = 0,9.0,8 + 0,2.0,2 = 0,76.
Áp dụng định lý Bayes, xác suất học sinh đã học bài đạt điểm cao là:
P(B | A) = \(\frac{{P\left( {B|A} \right).P\left( A \right)}}{{P\left( B \right)}} = \frac{{0,9.0,8}}{{0,76}} \approx 0,9474.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Người đó thực sự mắc bệnh”.
B là biến cố: “Người đó không mắc bệnh”.
C là biến cố: “Kết quả dương tính”.
Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).
Xác suất để kết quả nhận được là dương tính là:
P(C) = P(C | A).P(A) + P(C | B).P(B)
= 0,99.0,02 + 0,01.0,98 = 0,0296.
Xác suất thực sự mắc bệnh khi kết quả dương tính là
P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Học sinh là nữ”,
\(\overline A \) là biến cố: “Học sinh là nam”,
B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.
Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.
P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.
Áp dụng công thức xác suất toàn phần, ta có:
P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)