Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?
Quảng cáo
Trả lời:

Đáp án đúng là: B
Gọi A là biến cố: “Học sinh đã học bài”.
\(\overline A \) là biến cố: “Học sinh chưa học bài”.
B là biến cố: “Học sinh đạt điểm cao”.
Theo đề, ta có:
Xác suất học sinh đã học bài là: P(A) = 0,8.
Xác suất học sinh chưa học bài là: P(\(\overline A \)) = 1 – 0,8 = 0,2.
Xác suất học sinh đạt điểm cao nếu đã học bài là: P(B | A) = 0,9.
Xác suất học sinh đạt điểm cao nếu chưa học bài là: P(B | \(\overline A \)) = 0,2.
Xác suất học sinh làm bài được điểm cao là:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = 0,9.0,8 + 0,2.0,2 = 0,76.
Áp dụng định lý Bayes, xác suất học sinh đã học bài đạt điểm cao là:
P(B | A) = \(\frac{{P\left( {B|A} \right).P\left( A \right)}}{{P\left( B \right)}} = \frac{{0,9.0,8}}{{0,76}} \approx 0,9474.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Người đó thực sự mắc bệnh”.
B là biến cố: “Người đó không mắc bệnh”.
C là biến cố: “Kết quả dương tính”.
Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).
Xác suất để kết quả nhận được là dương tính là:
P(C) = P(C | A).P(A) + P(C | B).P(B)
= 0,99.0,02 + 0,01.0,98 = 0,0296.
Xác suất thực sự mắc bệnh khi kết quả dương tính là
P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Học sinh là nữ”,
\(\overline A \) là biến cố: “Học sinh là nam”,
B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.
Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.
P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.
Áp dụng công thức xác suất toàn phần, ta có:
P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.