Câu hỏi:
21/10/2024 935Có hai lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô nãy lấy ngẫu nhiên ra 1 sản phẩm. Khi đó:
a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \(\frac{5}{8}.\)
b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \(\frac{3}{8}.\)
c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất để sản phẩm đó có lô thứ II là \(\frac{2}{5}.\)
d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất để sản phẩm đó có lô thứ nhất là \(\frac{1}{2}.\)
Số mệnh đề đúng trong các mệnh đề trên là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi B1 là biến cố: “Lô lấy ra là lô I”
B2 là biến cố: “Lô lấy ra là lô II”.
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.
Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)
Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).
Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)
Vậy ý c đúng.
b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)
Vậy ý b đúng.
c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).
Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)
Vậy ý c đúng.
d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).
Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)
Vậy ý d sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Người đó thực sự mắc bệnh”.
B là biến cố: “Người đó không mắc bệnh”.
C là biến cố: “Kết quả dương tính”.
Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).
Xác suất để kết quả nhận được là dương tính là:
P(C) = P(C | A).P(A) + P(C | B).P(B)
= 0,99.0,02 + 0,01.0,98 = 0,0296.
Xác suất thực sự mắc bệnh khi kết quả dương tính là
P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Học sinh là nữ”,
\(\overline A \) là biến cố: “Học sinh là nam”,
B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.
Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.
P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.
Áp dụng công thức xác suất toàn phần, ta có:
P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)