Câu hỏi:

21/10/2024 2,412

Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 câu hỏi về chủ đề tự nhiên và 16 câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đỏ bạn Bình lấy ngẫu nhiên một câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gọi A là biến cố: “Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên”.

B là biến cố: “Bạn bình lấy được bộ câu hỏi về chủ đề xã hội”.

Khi đó, P(A) = \(\frac{{20}}{{36}} = \frac{5}{9}\); P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{9} = \frac{4}{9}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó 16 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | A) = \(\frac{{16}}{{35}}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | \(\overline A \)) = \(\frac{{15}}{{35}}.\)

Theo công thức xác suất toàn phần, xác suất của bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = \(\frac{5}{9}.\frac{{16}}{{35}} + \frac{4}{9}.\frac{{15}}{{35}} = \frac{4}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi A là biến cố: “Người đó thực sự mắc bệnh”.

B là biến cố: “Người đó không mắc bệnh”.

C là biến cố: “Kết quả dương tính”.

Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).

Xác suất để kết quả nhận được là dương tính là:

P(C) = P(C | A).P(A) + P(C | B).P(B)

= 0,99.0,02 + 0,01.0,98 = 0,0296.

Xác suất thực sự mắc bệnh khi kết quả dương tính là

P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)

Lời giải

Đáp án đúng là: B

Gọi A là biến cố: “Học sinh là nữ”,

\(\overline A \) là biến cố: “Học sinh là nam”,

B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.

Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.

P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.

Áp dụng công thức xác suất toàn phần, ta có:

P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay