Câu hỏi:
22/10/2024 114
I. Nhận biết
I. Nhận biết
Kết luận nào sau đây là sai khi nói về đồ thị hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)?\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đồ thị của hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) là một đường cong, gọi là đường parabol, có các tính chất sau:
Có đỉnh là gốc tọa độ \(O\,;\)
Có trục đối xứng là \(Oy\,;\)
Nằm phía trên trục hoành nếu \(a > 0\) và nằm phía dưới trục hoành nếu \(a < 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Điểm thuộc \(\left( P \right)\) có tung độ bằng \( - 6\) thì hoành độ \(x\) thỏa mãn phương trình \( - 6 = - 2{x^2}\) nên \({x^2} = 3.\)
Do đó \(x = 3\) hoặc \(x = - 3.\)
Vậy tọa độ các điểm cần tìm là \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)
Lời giải
Đáp án đúng là: B
Điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) thì tung độ là \(y = {\left( { - 1} \right)^2} = 1.\)
Khi đó, điểm \(\left( { - 1\,;\,\,1} \right)\) đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\).
Điểm thuộc \(\left( P \right)\) có hoành độ bằng \(2\) thì tung độ là \(y = {2^2} = 4.\)
Khi đó, điểm \(\left( {2\,;\,\,4} \right)\) đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng 2.
Đường thẳng cần tìm có dạng \(y = ax + b\,\,\left( d \right)\)
Đường thẳng đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) và \(2\) nên ta có
\(\left\{ \begin{array}{l}\left( { - 1\,;\,\,1} \right) \in d\\\left( {2\,;\,\,4} \right) \in d\end{array} \right.\) nên \(\left\{ \begin{array}{l}1 = - a + b\\4 = 2a + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right..\)
Vậy đường thẳng cần tìm là \(y = x + 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.