Câu hỏi:

22/10/2024 706

Phương trình \(4{x^2} + 9 = 0\) có bao nhiêu nghiệm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(4{x^2} + 9 = 0\) suy ra \(4{x^2} = - 9\) suy ra \({x^2} = \frac{{ - 9}}{4} < 0\) (vô lí).

Vậy phương trình \(4{x^2} + 9 = 0\) vô nghiệm.

Câu 5. Giải một bài toán bằng cách lập phương trình có bao nhiêu bước?

A. \(4.\)B. \(5.\)C. \(3.\)D. \(5.\)

Hướng dẫn giải

Đáp án đúng là: B

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

− Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

− Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

− Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Vậy có 3 bước giải một bài toán bằng cách lập phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi số chiếc xe theo dự định của đoàn xe là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Số chiếc xe thực tế chuyên chở là \(x + 6\) (chiếc)

Theo dự định mỗi xe phải chở số tấn hàng là \(\frac{{24}}{x}\) (tấn)

Thực tế mỗi xe phải chở số tấn hàng là \(\frac{{24}}{{x + 6}}\) (tấn)

Do thực tế mỗi xe chở ít hơn dự định là \(2\) tấn nên ta có phương trình:

\(\frac{{24}}{x} - \frac{{24}}{{x + 6}} = 2\)

\(24\left( {x + 6} \right) - 24x = 2\left( {{x^2} + 6x} \right)\)

\({x^2} + 6x - 72 = 0\)

Ta có: \(\Delta ' = {3^2} - 1.\left( { - 72} \right) = 81\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{ - 3 - \sqrt {81} }}{1} = - 12\) (loại); \({x_1} = \frac{{ - 3 + \sqrt {81} }}{1} = 6\) (thỏa mãn điều kiện)

Vậy thực tế đoàn xe có \(6 + 6 = 12\) (chiếc xe).

Lời giải

Đáp án đúng là: C

Ta có \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\)

\(\left[ {\left( {x + 2} \right)\left( {x + 6} \right)} \right]\left[ {\left( {x + 5} \right)\left( {x + 6} \right)} \right] = 504\)

\(\left( {{x^2} + 8x + 12} \right)\left( {{x^2} + 8x + 15} \right) = 504\,\,\,\left( * \right)\)

Đặt \(t = {x^2} + 8x\), phương trình \(\left( * \right)\) trở thành \(\left( {t + 12} \right)\left( {t + 15} \right) = 420\)

\({t^2} + 27t + 180 = 504\)

\({t^2} + 27t - 324 = 0\)

\(\left( {t - 9} \right)\left( {t + 36} \right) = 0\)

\(t = 9\) hoặc \(t = - 32.\)

Ta xét hai trường hợp sau:

Với \(t = 9\) ta có:

\({x^2} + 8x = 9\)

\({x^2} + 8x - 9 = 0\)

\(\left( {x - 1} \right)\left( {x + 9} \right) = 0\)

\(x = 1\) hoặc \(x = - 9.\)

Với \(t = - 32\) ta có:

\({x^2} + 8x = - 32\)

\({x^2} + 8x + 32 = 0\)

\(\left( {{x^2} + 8x + 16} \right) + 16 = 0\)

\({\left( {x + 4} \right)^2} + 16 = 0\,\,\,\left( {***} \right)\)

Vì \({\left( {x + 4} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R},\) nên phương trình \(\left( {***} \right)\) vô nghiệm.

Vậy tích các nghiệm của phương trình đã cho là: \(1.\left( { - 9} \right) = - 9.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP