Câu hỏi:
22/10/2024 76Một đoàn xe vận tải nhận chuyên chở \(24\) tấn hàng. Khi sắp khởi hành thì đoàn xe được điều thêm \(6\)chiếc xe nữa nên mỗi xe lúc đó phải chởi ít hơn \(2\) tấn hàng so với dự định. Tính số xe thực tế tham gia vận chuyển (biết khối lượng hàng mỗi xe chở là như nhau).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi số chiếc xe theo dự định của đoàn xe là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*}} \right)\)
Số chiếc xe thực tế chuyên chở là \(x + 6\) (chiếc)
Theo dự định mỗi xe phải chở số tấn hàng là \(\frac{{24}}{x}\) (tấn)
Thực tế mỗi xe phải chở số tấn hàng là \(\frac{{24}}{{x + 6}}\) (tấn)
Do thực tế mỗi xe chở ít hơn dự định là \(2\) tấn nên ta có phương trình:
\(\frac{{24}}{x} - \frac{{24}}{{x + 6}} = 2\)
\(24\left( {x + 6} \right) - 24x = 2\left( {{x^2} + 6x} \right)\)
\({x^2} + 6x - 72 = 0\)
Ta có: \(\Delta ' = {3^2} - 1.\left( { - 72} \right) = 81\)
Suy ra phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - 3 - \sqrt {81} }}{1} = - 12\) (loại); \({x_1} = \frac{{ - 3 + \sqrt {81} }}{1} = 6\) (thỏa mãn điều kiện)
Vậy thực tế đoàn xe có \(6 + 6 = 12\) (chiếc xe).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Tích các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\) là
Câu 5:
Một đội xe cần phải chuyên chở \(150\) tấn hàng. Hôm làm việc có \(5\) xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm \(5\) tấn. Nếu gọi số xe ban đầu là \(x\). Phương trình của bài toán này là
Câu 6:
Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.
về câu hỏi!