Câu hỏi:

22/10/2024 1,584

Một đoàn xe vận tải nhận chuyên chở \(24\) tấn hàng. Khi sắp khởi hành thì đoàn xe được điều thêm \(6\)chiếc xe nữa nên mỗi xe lúc đó phải chởi ít hơn \(2\) tấn hàng so với dự định. Tính số xe thực tế tham gia vận chuyển (biết khối lượng hàng mỗi xe chở là như nhau).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi số chiếc xe theo dự định của đoàn xe là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Số chiếc xe thực tế chuyên chở là \(x + 6\) (chiếc)

Theo dự định mỗi xe phải chở số tấn hàng là \(\frac{{24}}{x}\) (tấn)

Thực tế mỗi xe phải chở số tấn hàng là \(\frac{{24}}{{x + 6}}\) (tấn)

Do thực tế mỗi xe chở ít hơn dự định là \(2\) tấn nên ta có phương trình:

\(\frac{{24}}{x} - \frac{{24}}{{x + 6}} = 2\)

\(24\left( {x + 6} \right) - 24x = 2\left( {{x^2} + 6x} \right)\)

\({x^2} + 6x - 72 = 0\)

Ta có: \(\Delta ' = {3^2} - 1.\left( { - 72} \right) = 81\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{ - 3 - \sqrt {81} }}{1} = - 12\) (loại); \({x_1} = \frac{{ - 3 + \sqrt {81} }}{1} = 6\) (thỏa mãn điều kiện)

Vậy thực tế đoàn xe có \(6 + 6 = 12\) (chiếc xe).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có \(4{x^2} + 9 = 0\) suy ra \(4{x^2} = - 9\) suy ra \({x^2} = \frac{{ - 9}}{4} < 0\) (vô lí).

Vậy phương trình \(4{x^2} + 9 = 0\) vô nghiệm.

Câu 5. Giải một bài toán bằng cách lập phương trình có bao nhiêu bước?

A. \(4.\)B. \(5.\)C. \(3.\)D. \(5.\)

Hướng dẫn giải

Đáp án đúng là: B

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

− Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

− Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

− Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Vậy có 3 bước giải một bài toán bằng cách lập phương trình.

Lời giải

Đáp án đúng là: C

Ta có \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\)

\(\left[ {\left( {x + 2} \right)\left( {x + 6} \right)} \right]\left[ {\left( {x + 5} \right)\left( {x + 6} \right)} \right] = 504\)

\(\left( {{x^2} + 8x + 12} \right)\left( {{x^2} + 8x + 15} \right) = 504\,\,\,\left( * \right)\)

Đặt \(t = {x^2} + 8x\), phương trình \(\left( * \right)\) trở thành \(\left( {t + 12} \right)\left( {t + 15} \right) = 420\)

\({t^2} + 27t + 180 = 504\)

\({t^2} + 27t - 324 = 0\)

\(\left( {t - 9} \right)\left( {t + 36} \right) = 0\)

\(t = 9\) hoặc \(t = - 32.\)

Ta xét hai trường hợp sau:

Với \(t = 9\) ta có:

\({x^2} + 8x = 9\)

\({x^2} + 8x - 9 = 0\)

\(\left( {x - 1} \right)\left( {x + 9} \right) = 0\)

\(x = 1\) hoặc \(x = - 9.\)

Với \(t = - 32\) ta có:

\({x^2} + 8x = - 32\)

\({x^2} + 8x + 32 = 0\)

\(\left( {{x^2} + 8x + 16} \right) + 16 = 0\)

\({\left( {x + 4} \right)^2} + 16 = 0\,\,\,\left( {***} \right)\)

Vì \({\left( {x + 4} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R},\) nên phương trình \(\left( {***} \right)\) vô nghiệm.

Vậy tích các nghiệm của phương trình đã cho là: \(1.\left( { - 9} \right) = - 9.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP