Giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm phân biệt \({x_1};\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 23\) là
Giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm phân biệt \({x_1};\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 23\) là
A. \(m = - 2.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: C
Phương trình \({x^2} - 5x + m + 4 = 0\)có \(a = 1 \ne 0\) và \(\Delta = 25 - 4\left( {m + 4} \right) = 9 - 4m.\)
Để phương tình có hai nghiệm phân biệt thì \(\Delta > 0\) hay \(9 - 4m > 0\) hay \(m < \frac{9}{4}.\)
Theo định lí Viète ta có\(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}.{x_2} = m + 4\end{array} \right.\).
Xét \(x_1^2 + x_2^2 = 23\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 23\)
\(25 - 2m - 8 = 23\)
\(m = - 3.\)(thỏa mãn)
Vậy \(m = - 3\) thì phương trình đã cho có hai nghiệm phân biệt \({x_1};\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 23.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(m = - 35.\)
B. \(m = 35.\)
C. \(m = \frac{3}{5}.\)
D. \(m = - \frac{3}{5}.\)
Lời giải
Đáp án đúng là: C
Phương trình \({x^2} + 2x + m = 0\) có \(a = 1 \ne 0\) và \(\Delta = 4 - 4.1.m = 4 - 4m.\)
Để phương tình có hai nghiệm phân biệt thì \(\Delta > 0\) hay \(4 - 4m > 0\) hay \(m < 1.\)
Theo định lí Viète, ta có\(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\,\,\,\left( 1 \right)\\{x_1}.{x_2} = m\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Theo đề bài ta có \(3x{}_1 + 2{x_2} = 1\,\,\,\,\left( 3 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 3 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\\3x{}_1 + 2{x_2} = 1\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} = 5\\{x_2} = - 7\end{array} \right.\).
Thay \({x_1} = 5\) và \({x_2} = - 7\) vào phương trình \(\left( 2 \right)\) ta được \(m = 5.\left( { - 7} \right) = - 35\).
Vậy \(m = - 35\) thì phương trình \({x^2} + 2x + m = 0\) có hai nghiệm \({x_1};\,\,{x_2}\) thỏa mãn \(3x{}_1 + 2{x_2} = 1.\)
Câu 2
A. \({x_1} = 1;\,\,{x_2} = \frac{{ - c}}{a}.\)
B. \({x_1} = 1;\,\,{x_2} = \frac{c}{a}.\)
C. \({x_1} = - 1;\,\,{x_2} = \frac{c}{a}.\)
D. \({x_1} = - 1;\,\,{x_2} = - \frac{c}{a}.\)
Lời giải
Đáp án đúng là: B
Xét phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right).\)
Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}.\)
Câu 3
A. \(25{m^2} - 4.\)
B. \(25{m^2} + 4.\)
C. \({m^2} + 4.\)
D. \(1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{x_1} + {x_2} = 3;\,\,\,{x_1}{x_2} = 2.\]
B. \({x_1} + {x_2} = - 3;\,\,{x_1}{x_2} = 2.\)
C. \({x_1} + {x_2} = 3;\,\,{x_1}{x_2} = - 2.\)
D. \[{x_1} + {x_2} = - 3;\,\,{x_1}{x_2} = - 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.